motivevave’

analyze. trade. evolve.

MotiveWave™

Software Development Kit (SDK)
Programming Guide

Version: 1.3

©2019 MotiveWave™ Software

MotiveWave ™

SDK Programming Guide “ nOtlve aveﬂ*

Preface

This document explains how to use the MotiveWave™ Software Development Kit (SDK) to implement
custom studies and strategies. The primary audience of this material is individual traders, or consultants
(both with a programming background, aka developers) looking to implement (and possibly distribute)
custom studies and/or strategies.

The development kit is based on the Java™ programming language. While advanced knowledge of this
language is not required, it is recommended that the person implementing the study or strategy have a
basic background in the language before reading this document.

Developers are free to use any development environment, including the command line tools in the
Java™ Development Kit. Examples provided will be with the Eclipse IDE (Integrated Development
Environment) available from: http://www.eclipse.org.

This document is intended to be a guide on how to use the SDK and is not a complete programming
reference. APl (Application Programming Interface) documentation is available (generated using
Oracle’s Javadoc tool) that explains all of the classes, interfaces and enumerations provided by the SDK.

Version 1.3 ©2019 MotiveWave™ Software Page 1 of 85

MotiveWave ™

SDK Programming Guide “ ﬁOtlve aveﬂ*

Change History

Several enhancements have been added in version 1.1 of the SDK (these are compatible with version 2.2
and higher of MotiveWave™). These enhancements include the following:

1.

Path Color — The color of a path can be changed dynamically (DataSeries::setPathColor(...) see
APl documentation).

Multiple Instruments — Studies/Strategies may incorporate data for one or more instruments.
Trades may also be placed on more than one instrument.

Composite Studies — A study may be composed of multiple study plots and overlays.

Access Control — Distribution and usage of your studies/strategies can be controlled and
managed using a web interface.

Trading Sessions — These may be used to constrain the trading hours for a strategy (intraday data
only).

Help Link — This new attribute on the StudyHeader allows you provide a link to a webpage with
more information on the study/strategy.

The following changes have been added in version 1.2 of the SDK (these are compatible with version 5.0
and higher of MotiveWave™). These enhancements include the following:

1.

Tick Data — Support for live and historical data. See section on Tick data.

The following changes have been added in version 1.3 of the SDK (these are compatible with version 5.3
and higher of MotiveWave™). These enhancements include the following:

1.
2.

Resize Points — Support mouse interaction using resize points.
Context Menu — Support for custom items added to the context menu (right click on study)

Version 1.3 ©2019 MotiveWave™ Software Page 2 of 85

MotiveWave ™
SDK Programming Guide

Table of Contents

motivewlave

Preface 1
Change History 2
1 Introduction 5
1.1 Whatis a Study? 5
1.1.1 Overlays 5
1.1.2 Study Plots 6

1.2 What s a Strategy? 7
1.3 Distribution 8
1.3.1 Access Control 8

2 Fundamental Classes 9
2.1 Packages 9
2.2 Study Class 9
2.3 StudyHeader 11
2.4 Describing User Settings 11
2.4.1 SettingsDescriptor class 13
2.4.2 SettingTab Class 14
2.4.3 SettingGroup Class 15

2.5 Settings class 16
2.6 Runtime Settings 18
2.6.1 Composite Studies 19

2.7 DataContext Interface 20
2.8 DataSeries Interface 21
2.9 Multiple Instruments 23
2.9.1 Design Time 24
2.9.2 RunTime 26
2.10 Custom Context Menu 26
2.11 Miscellaneous Classes 28

3 Overlay Example: ‘My Moving Average’ 30
3.1 StudyHeader Annotation (@StudyHeader) 31
3.2 initialize method 32
3.2.1 Design Time Information 34
3.2.2 Run Time Information 36

3.3 calculate method 36

4 Study Plot Example: ‘Simple MACD’ 38
4.1 StudyHeader Annotation (@StudyHeader) 41
4.2 initialize method 41
4.3 calculate Method 43

5 Drawing Figures 45
5.1 Figure Class 45
5.2 Box 46
5.3 ColorRange Class 46
5.4 Line Class 47
5.5 Polygon 47
Version 1.3 ©2019 MotiveWave™ Software Page 3 of 85

MotiveWave ™
SDK Programming Guide

5.6 ResizePoint
5.6.1 Resize Types
5.6.2 Absolute Positioning
5.7 SinglePointFigure
5.7.1 Marker Class
5.7.2 Label Class
6 Signals
7 Tick Data
8 Strategies
8.1 StudyHeader
8.2 Study Class
8.3 OrderContext Interface
8.4 Order Interface
8.5 Trading Sessions
8.5.1 Runtime Support
8.6 Sample MA Cross Strategy
8.7 Strategy States
8.8 Manual Strategies
8.8.1 Entry States
9 Logging
10 Internationalization
10.1 Example: MACD
11 Deployment
11.1 Packaging
11.2 Loading Extensions
11.3 Third-Party Libraries (jars)
12 Environment Setup
12.1 Where do | get the SDK?
12.2 |Installing Java
12.3 |Installing Eclipse
12.4 Creating a Project

motivewlave

47
48
49
49
50
50
51
54
56
56
57
58
60
62
63
64
66
67
68
70
72
72
75
75
75
76
77
77
77
77
77

Version 1.3

©2019 MotiveWave™ Software

Page 4 of 85

MotiveWave ™

SDK Programming Guide “ nOtlve aveﬂ*

1 Introduction

Welcome to the MotiveWave™ Software Development Kit (SDK)! If you are reading this document then
you are interested in developing a custom study and/or strategy for use within MotiveWave™.

Knowledge of the Java™ programming language is necessary for you to implement your
studies/strategies. If you are unfamiliar with this language, it is recommended that you consult a book
or take a basic course on Java programming.

All of the studies and strategies that are built into MotiveWave™ were programmed using the SDK. The
source code for these are freely available and may be used as examples or starting points.

Before you begin, it is important to understand studies and strategies and the difference between them.

1.1 What is a Study?

A study uses historical price and/or volume data to display new information to the user to assist them in
making buying or selling decisions. There are two types of studies:

1. Overlays
2. Study Plots

It is also possible to create studies that contain multiple plots and overlays.

1.1.1 Overlays

Overlays display information that is drawn on top of an existing plot (most typically the price plot). What
is actually displayed depends on the study itself. Some examples of what a study may display include:

e Paths — A path is a series of lines that connects data points. Examples of this include a moving
average or price bands.

e Markers — Markers may be used to indicate points of interest (such as buy, sell or stop loss
locations). Markers come in many forms: arrows, circles, triangles, letters, numbers etc

e Shades — Area of a plot may be shaded to indicate zones of interest

e Lines — May include trend lines, support or resistance areas

e Paint Bars — Price or volume bars may be displayed using specific colors

e Text — Descriptive text may be used to explain elements of the study

e Figures — any type of figure or drawing may be drawn on a plot as part of the overlay.

¢ Indicators — Indicators may be added to the vertical axis to show the current value of a study.

The following screen shot illustrates an example of some of the elements that may be part of an overlay:

Version 1.3 ©2019 MotiveWave™ Software Page 5 of 85

MotiveWave™ . ®

. . |
SDK Programming Guide " 'Otlve LJave
Figure 1 - Overlay Example
Ll EUR/USD 15m X | + B e =
"EURIOSD 15 min” " — J1.07000

Pivot Points(1 day,Fib Zone)]
MA Cross(C,EMA,10,C,EMA 20)]

R=I Bars(C,14.70.0,30.0) Study Legend d41.06900
Suppart/Resistance(C.20)]
BP,

1.06690

I LTI £

Dotted Line

11.06600

1.06500

11.06400

Indicator

: 11.06300
| : J1.06200
: 100,
Motivelave i | 1.060
1 1 1 1 1 1 1 1 1 1 1 1 1 1
14:00 16:00 18:00 20:00 22:00 Feb-10 2:00 4:00 6:00 8:00 10:00 12:00 14:00 Feb-12
1min Smin 10min 15min 20min 30min 45min 1hour 2hour 6hour 1day 1week 2week 1month == = vy @ ¢ B

1.1.2 Study Plots

Study plots display information drawn in a plot that is separate from the price plot. The typical reason
why this is displayed in a separate plot is because the values generated are independent (or outside) of
the price range.

Overlays may be added to a study plot to display additional information (such as a moving average).

The following screen shot shows some examples of study plots:

Version 1.3 ©2019 MotiveWave™ Software Page 6 of 85

MotiveWave™

SDK Programming Guide AﬂOtlve ave
Figure 2 - Study Plot Example
Ll EUR/USD 15m* x | + E & =
EURFUISD 15 min . I A | +]
! '+- d1.06800
Mol e n|w+--+ Yy, |
* Bttt “ .,.l |

11.06500

‘ i W* ‘
e
** —;1.05200

i =1.06100
Mot Styudy Label . . . i I | | ! ! 1 1 I Study Plot
- a:00 20:00 22:00 Feb-10 2:00 4:00 6:00 8:00 10:00 12:00 14:004
MACD({C,EMA,12,26,9) i i

II.III.II“I.I.II.-.-__..--.-I-.-.- e — _ S e _______i _______)

-

RSI{C,14) 'i l Overlay

EMA(RSI(C.14).20)

y IO~
== A ——

7 Indicator .U
SMI(2,8,5,5) i m 1 X]

1min Smin 10min 15min 20min 30min 45 min 1 hour 2hour 6&hour 1day 1week 2week =3 @i @ [~~~ B

1.2 What is a Strategy?

A strategy is a special type of study that may be used to automate or partially automate trading. In
addition to displaying the study information, a Control Box is made available that allows the user to
activate/deactivate a strategy and view important runtime information. The following screen shot
shows an example of the Moving Average Cross Strategy:

Version 1.3 ©2019 MotiveWave™ Software Page 7 of 85

MotiveWave™ 10tlve ave@
SDK Programming Guide "
Figure 3 Strategy Example
Ll USGil 15m x | + B + = 2"
USOil - 15 min H]
! Hl H54.00
“i / !f i 5327
TTh | 5377
Hs3.60
Strategy Edit Settings i]
Control Box ! 53,40
5320
. . |
= T i - Strategy Overlay (MA i
SMEIED oL ’ Cross in this case) : H53.00
Position: N/A g | " | (5788
Entry Price: ; ; [
) . : : Us2.80
' Unrealized PL: Status Labels : |
Realized P/L: NIA : :
Total PL: N/A 6260
flotive\Wave i i)
1 1 1 1 1 1 1 1 1 1 I 1 1 1 1 1 1 I
400 600 800 1000 12.00 1400 1600 19.00 21:00 Feb-10 200 400 600 800 1000 1200 1400 Feb-12
imin 5min 10min 15min 20min 30min 45min 1hour 2hour Ghour 1day 1week 2week 1month == = @iy @ |0l B

MotiveWave™ supports two modes for strategies:

1. Automatic — Once the user activates the strategy, it will automatically buy and sell based on the
internal logic.
2. Manual - In this mode, the user tells the strategy when it is OK to enter.

1.3 Distribution

Studies (and strategies) may be distributed to users by packaging them together in Jar (Java™ Archive)
files. If you feel the need to protect the contents of these packages you may use obfuscators (such as
ProGuard) to prevent reverse engineering of the binary code.

1.3.1 Access Control

You can control the access to a set of studies/strategies by using the ‘secured’ attribute in the Study
Header. Setting this attribute to ‘true’ will ensure that only users that you have given access will be
allowed to load and execute studies and strategies in the given namespace.

Access control requires an account to be setup with MotiveWave™. If you would like to utilize this
feature, send an email requesting that an account be created to: support@motivewave.com.

Version 1.3 ©2019 MotiveWave™ Software Page 8 of 85

mailto:support@motivewave.com

MotiveWave ™

SDK Programming Guide “ ﬁOtlve aveﬂ*

2 Fundamental Classes

This section describes the fundamental classes that you will need to interact with when building your
custom study/strategy. For a complete view of all of the classes/interfaces in the SDK, please consult
the APl documentation.

2.1 Packages
The SDK consists of the following 6 packages:

1. com.motivewave.platform.sdk.common — Contains common classes and interfaces. These
include ‘info’ classes, enumerations, utility functions and ‘context’ classes that expose
functionally and data from MotiveWave™

2. com.motivewave.platform.sdk.common.desc — Contains ‘Descriptor’ classes. These are used to
describe settings and values to the MotiveWave™ runtime environment.

3. com.motivewave.platform.sdk.common.menu — Contains classes for implementing custom
context menus.

4. com.motivewave.platform.sdk.draw — The classes in this package are used to draw figures on
the price and study plots.

5. com.motivewave.platform.sdk.study — Contains the base classes for creating and interacting
with studies and strategies.

6. com.motivewave.platform.sdk.order_mgmt — Contains classes/interfaces for managing orders.
These are used in conjunction with strategies.

2.2 Study Class

The Study class is the base class for all studies and strategies. When implementing any study/strategy
you will first start by deriving directly or indirectly from this class.

Why is there no Strategy Class?

Strategies are a specialized version of a study, in fact most strategies are based (at least in part) on an
existing study. If there was a separate Strategy class it would be difficult (if not impossible) to implement a
strategy by deriving from an existing study. It is for this reason that the methods and properties that are
specific to strategies are included in the Study class.

For most studies there are two methods that you will override:

1. initialize — The purpose of this method is to describe the user configurable settings for the study
and describe the runtime behavior.
2. calculate — This method calculates the values for the study at the given historical bar.

The following diagram illustrates the basic elements that you need to be concerned with in the Study
class. For a complete list of methods and properties, see the APl documentation.

Version 1.3 ©2019 MotiveWave™ Software Page 9 of 85

MotiveWave™

SDK Programming Guide mOtive-"ave®

Figure 4 - Basic Study Methods

package com.motivewave.platform.sdk.study;
f*% This is the base class for all studies and strategies. */

public class Study All studies/strategies derive
i directly or indirectly from this class

f*% This method is called to initialize the design
mblic woid initialize (Defaults defaults) {}

Initialize the settings and
describe the runtime

behaviour of this stud
J#% Override this method to calculate the values a Y

the data =series. This method is called from <brcalculateValues (ctx)

and onBarUpdate (gLx)

iparam index - index in the data series Calculate the values for
tparam ctx - Data Context */ " the given index in the data

eprotected vold calculate (int index, DataContext ctx) {} seres.

protected wvoid calculateValues (DataContext ctx)

f** By default, this method iz called on events where the data series has been affected.

{
DataSeries serie=s = ctx.getDataSeries(): Hxi“xﬁhx““xh_ Opﬂoan'youcantwenMe

for(int i = 0; i « series.size(); i++) { these methads. but far most
if (series.isComplete (i)} continne;

studies this is unnecessary.
calculate (i, cotx):

S*% This method i= called when the latest bar in the data series has been updated.

LY L S SN aamt JPPESEER SN L

*
~

-
7
public vold onBarUpdate (DataContext ctx) { calculate (ctx.getDataSeries().size()-1, ctx); }

There are 3 main properties in the Study class that are important for implementing a study:

1. Runtime Descriptor — this describes the runtime behavior of the study
2. Settings Descriptor — This describes the user settings

3. getSettings() — This is typically used in the calculate method to get access to the settings that the

user has chosen.

Figure 5 - Study Properties

‘pu.blic. FEuntimeDescriptor getBuntimeDescriptor() {...} Describes
public void setRuntimeDescriptor (RuntimeDescriptor dese) {...} |runtime behavior

public void setSettingsDescriptor (SettingsDescriptor =d) {...} EEtT.ingE

public SettingsDescriptor getSettingsDescriptor() {...} Describes user

puoblic Settings getSettings() {...¥
public volid setSettings (Settings settings

Provides access
to the settings

JS#% This convenience method gets the StudyHea
public StudyHeader getHeader() {...}

public String getLabel() {...}

e s bl O v B

defined for thi

f#% Gets the display label for this study including setting wvalues. */

E
{

;

Version 1.3 ©2019 MotiveWave™ Software

Page 10 of 85

MotiveWave™

SDK Programming Guide monve -‘jave@

2.3 StudyHeader

The StudyHeader is an annotation that is required on every class derived from the Study class. The
purpose of this annotation is to describe static information about the study/strategy.

The StudyHeader is read when the Study class is first loaded and is used to register the study with
MotiveWave™ and make it available in the Study menu and the ‘Add Study’ dialog.

The following screen shot shows some of the important properties of the StudyHeader. For a full
description of all properties see the APl documentation.

Figure 6 - StudyHeader properties
package com.motivewave.platform.sdk.study;

The StudyHeader describes static

@Target(ElementType. TYPE)
public @interface StudyHeader

{

/** Namespace for this study (Must be unique for your organization) */
String namespace();

/** Unique (within the namespace) ID for this study. */
String id();

/** @return true if this study should be protected by nan
boolean secured() default false;

/** Resource bundle to pull translatable strings from. *
String rb() default "";

/#* HTTP Link to a website that displays documer®et=I0M on
String helplink() default "";

/** Displayed name of this study. */

String name();

J¥¥ Menu to display this study under (optional). */
String menu() default "";

Together, these uniquely
identify a study/strategy.

Use this to control access
to this namespace.

Displays help button to .
link to a webpage. */

Displayed in the menu
and Study Dialog.

/¥* Description displayed in the study dialog. */ Displayed in the Study
String desc(); Dialog (html tags allowed).
/** Name displayed on plot label (uses name if not specifoewpy

String label() default "";

/** Indicates if this study is an overlay that may be pld Identifies as either an overlay §
boolean overlay();

t lot (false).
/** Indicates if this study can be overlaid on any plut.:*‘{rue} or a plot (false)
boolean studyOverlay() default false;
/** Indicates if this study generates signals. */

boolean signals() default false; true if signals are generated
/** @return true if this study is a strategy. */
boolean strategy() default false; true if this is a strategy

2.4 Describing User Settings

The MotiveWave™ SDK provides a lot of flexibility when describing user settings for a study. Settings
may be organized into tabs and groups which are displayed in the study dialog. MotiveWave™ also
provides many different setting descriptors to represent different types of settings.

Version 1.3 ©2019 MotiveWave™ Software Page 11 of 85

MotiveWave™ motlve Jave@

SDK Programming Guide

The following screen shot illustrates the study dialog for a CCl study:

Figure 7 - Study Dialog

4 SettingTab
& oo =

eIl Advanced Signals Options

Commodity Channel Index (CCI) X

CCl odities move in cycles, with

high

(ie:

o identify cyclical turns in commaodities. CCI
ing at periodic intervals. Itis recommended 0| .o from the

le use 20 day CClI). StudyHeader

Description from
the StudyHeader

Inputs

Period (bars): IntegerDescriptor
Colors ﬁ SettingGroup

Line: | DD ~ || —10~ | — ~ Y DiSplaYﬁ PathDescriptor

Histogram: || NG ~ DiSF"'aY-ﬁ BarDescriptor
Top Fill: ~ v/ Displa

P " A :I-Cc:IurDescriptur

Bottom Fill: = Mgm-m_mems . /| Display

Indicator: ~ T - Line v Display{ IndicatorDescriptor

Save Defaults Hemwj Help Link (see

\l StudyHeader)
The classes for describing user settings can be found in the package:
com.motivewave.platform.sdk.common.desc. The following UML (Universal Markup Language)
diagram illustrates the high level classes involved and how they relate to each other. For a full list of the
available SettingDescriptor classes, see the APl documentation.

Version 1.3 ©2019 MotiveWave™ Software Page 12 of 85

MotiveWave ™

SDK Programming Guide “ nOtlve aveﬂ*

Figure 8 - Descriptor Classes

SettingsDescriptor
+addTab() - -
+getTabs() SettingTab SettingGroup
+addDependency() ‘_—name ‘__-name
+getDep_endencies() 1 +addGroup() 1+ +addRow()
+getSettings() +getGroups() +getRows()
+getSetting()
+getDefaultValue() 1 ?
*
Contains all of the - -
setting descriptors. SettingDescriptor
rame Base Class for all
. setting descriptors
label 9 P
-showLabel
-defaultValue
-enabled
-supportsDisable
+createlnput()
N\ For a full list, see API
documentation.
|BarDescriptor| |Co|orDescriptor| |InputDescriptor| |IntegerDescriptor| |PathDescriptor .

2.4.1 SettingsDescriptor class

The SettingsDescriptor class contains all of the user configurable settings. An instance of this class
should be created in the ‘initialize’ method (of the Study class) and assigned to the study using the
‘setSettingsDescriptor’ method.

There are two methods in this class that are important:

1. addTab — Adds a SettingTab object that contains settings on a tab in the Study Dialog
2. addDependency — Used to identify dependencies between settings. For example, an
‘EnabledDependency’ will enable a setting if a BooleanSetting is true or false.

Version 1.3 ©2019 MotiveWave™ Software Page 13 of 85

MotiveWave™

SDK Programming Guide mOtiVe_‘lave®

Figure 9 - SettingsDescriptor
package com.motivewave.platform.sdk.common.desc;

JS#*% Contains all of the Settinglescriptor instances that describe the usexr
configurable settings for the study. These settings are organized into
tabs to be displayed in the Study Dialog. */

poblic class SettingsDescriptor

{

S*% Gets gll of the SetctingDescriptor instances declared for this
study *,
poblic List<SettingDescriptor>» getSettings() {...}
JS**% Gets all of the SettingDescriptor associated with the given name. */
puoblic SettingDescriptor getSetting(String name) {...}

*

I W WY W e v

JS#% Gets the default walue for the setting associated with the given name.
public Cbhbject getDefaultWValue (String name) {...}

S*% Gets the tabs (as displaved in the Study
public List<SettingTab> getTabs() {...} Adds a tab to the to be
J/*¥*% Ldds a SettingTab. */ displayed in the Study

‘public'. void addTab (SettingTab tab) {...} Dialog. The tab will contains
Setting Descriptors.

JS*% BLdds a dependency between 2 or more SettinocDescripto B
public woid addDependency (InputDependency d) {...} Adds a dependency
f/** Gets the list of setting dependencies. */ between settings.

poblic List<InputDependency> getDependencies() {...}

4"“‘J"EN-“"‘Kf.pu-naw"’Hx___".1‘l«41.H-‘Ilﬁkm‘p"~.‘aﬂ‘nhﬂlﬁfhhud'ﬂ:

2.4.2 SettingTab Class

The SettingTab class represents a tab in the study dialog. This simple class consists of a name (to display
in the tab) and a set of SettingGroup instances.

Version 1.3 ©2019 MotiveWave™ Software Page 14 of 85

MotiveWave™

SDK Programming Guide mOtlveu"aVe

Figure 10 - SettingTab class
package com.motivewave.platform.sdk.common.desc;

f#** Tdentifiezs a set of groups that may be organized in a tab. */
public class SettingTab
{
/®%% Creates a tab with the given name */
‘pu.b-li::. SettingTab (String name) {...}

fS#% Gretnrn the human readable name of this tab. */
poblic String getHame () {...}

f#% Bhdds a group of settings. */
‘pu.blic'. void addGroup (SettingGroup grp) {...}

f*% @Ereturn the list of setting groups in this tab. */f
public List<SettingGroup> getGroups() {...}

n\’\ - [W 'S

2.4.3 SettingGroup Class

The SettingGroup class organizes related settings into a named group. The group consists of a set of
rows that each contains 1 or more setting descriptors.

Figure 11 - SettingGroup class
package com.motivewave.platform.sdk.common.desc;

f#% ITdentifies a set of inputs that are to be arranged as a group when
displaying the configuration dialog to the end user.
The input group con=ists of a series of row. By default each
input element is placed on a separate row (in the order in which
they are giwven). To place more than one element on the same row,
pass multiple setting descriptors to the addRow method. #/
public class SettingGroup
{
f#% Creates a SettingGroup with the given name. */
.public: SettingGroup (String name) { iName = name; }

f*% @Greturn the name of the group (displayed in the Study Dialog. */
poblic String getMHame () { retorn iName; }

AL Y s T)

S#% hdds a row with 1 or more inputs. */
‘pu.blic'. vold addBow (SettingDescriptor... row) { iRows.add(row): }

f#% Gets the rows in this group (each row may contain 1 or more inputs) */
public List<SettinglDescriptor|[]> getRows() { retorn iRows=s; }

R NP Seey_ e s W N Ny Y Tt o

Version 1.3 ©2019 MotiveWave™ Software Page 15 of 85

MotiveWave ™ .
SDK Programming Guide ’ ﬂOtlve ave

2.5 Settings class

The Settings class contains all of the information about the settings configured by the user of the study.
You can access this class by using the getSettings() method in the Study base class.

Many of the setting descriptor classes have corresponding ‘Info’ classes (see
com.motivewave.platform.sdk.common package) that contain the user specific settings. These may be
accessed using a series of ‘get’ methods on the Settings class. The following screen shot illustrates some
of these methods. For a complete description of the Settings class and the Info classes see the API
documentation.

Version 1.3 ©2019 MotiveWave™ Software Page 16 of 85

MotiveWave ™

SDK Programming Guide motlve«ﬂave

Figure 12 - Settings class
package com.motivewave.platform.sdk.common;

S** Encapsulates the configuration information for a study or strategy. *
poblic class Settings implements Cloneable
{

Y

f** Gets the SettingsDescriptor obiect that descrikbes the user settings.
public SettingsDescriptor getDescriptor()

f**% Gets the double value associated to the given name. */
puoblic Double getDouble (String name)
f*% Gets the double wvalue associated to the given name. */
puoblic Integer getlInteger (String name)
f*% Gets the boolean value associated to the given name. */
puoblic EBoolean getBoolean (String name)

S#% iretnrn the PathInfo associated to the given name. */
puoblic PathInfo getPath (String name)
S*% [iretnrn a set 1 the registered path names. */
poblic Set<String> getPat

S#% Gretorn the MarkerInfo associated he given name. */

public MarkerInfo getMarker (5tring name)

f*% EBreturn a set of all the i ers. */

puoblic Set«<String> getMarkers()

S** @return the IndicatorIn ated to the eI

poblic IndicatorInfo getIndicator (Strin }
S** Eretnrn a set of all the regi
public Set<S5tring> getIndi

Info’ classes. See
common package.

S**% Gretunrn the i I ven name. */ -

JS¥*% @Eretnrn a set of all th
poblic Set<5tring> getB

f** @Greturn the 3] i the given name. */
f*% Ereturn a set of al shade names. */
public Set«<S5tring> g hades ()

S** Eretunrn the ideInfo associated to the given name. */
poblic GuideInfo getGuide (String name)

SE% Gretnrn a set of all the registered guides. */f
poblic Set«<String> getGuides= ()

S*% fAretorn the input key associated to the given name. */
public Chject getlnput (String name)
J** Ereturn a set of all the registered input names. */
poblic Set«<String> getlInputs()

;

S*% Ereturn the Color asscociated to the given name. *)

Fr**"’"wwhfww"\

‘\

Version 1.3 ©2019 MotiveWave™ Software Page 17 of 85

MotiveWave ™

SDK Programming Guide “ nOtlve aveﬂ*

2.6 Runtime Settings

The RuntimeDescriptor (com.motivewave.platform.sdk.study package) is used to describe runtime
behavior for the study. This includes the following:

1. Label Settings — used to describe how the label is generated
2. Export Values — These are values generated by the study that may be used outside of the study.
3. Declare Elements — These methods associate values generated by the study to visual constructs
on the ‘default’ plot (see Composite Studies below for more information):
a. Paths — A series of values connected by lines
b. Bars— Vertical bars displayed on a plot
c. Signals — Signals generated by the study
d. Indicators — Indicators displayed on the vertical axis
4. Study Plot Settings (default plot)
a. Top/Bottom Insets — Used to add space to the top or bottom of the plot
b. Vertical Range — Range of the vertical axis
¢. Min Tick — precision of the vertical axis values
d. Horizontal Lines — Horizontal lines displayed on the study plot

Why do | need to declare elements such as a Path?

You may ask yourself, ‘why doesn’t the PathDescriptor (or other descriptor classes) class include the value
key?’. While this may make sense in most situations, it does not allow you to use the same path
information for multiple paths. Consider for example a case where you have a price bands study and you
want to have the same settings for the top and bottom bands. By declaring the path for the top and
bottom values as the same path info, you are able to re-use this descriptor object.

Version 1.3 ©2019 MotiveWave™ Software Page 18 of 85

MotiveWave™

SDK Programming Guide mOtlveh"aVe

Figure 13 - RuntimeDescriptor class
package com.motivewave.platform.s=sdk.study;

S*¥% This class describes 'runtime' settings for the study. */F
poblic cla=ss RuntimeDescriptor
{
JS#*% TUse this method to identify which settings should be part of
the graph label (and to identify the study). */
poblic volid setlLabelSettings (5tring... vals)

S#% Use this method to identify the numeric wvalues generated by
this =study that are to affect the wertical range of the graph
(when auto =scale is turned on). */

public void setRangeFeys (Cbject... keys)

J/#*% Exports a wvalue so that it may be used outside of the context */
poblic vold exportValue (ValueDescriptor desc)

S#% Declare a path associated with the given walue key. Settings for the
path are resolved using the pathSettingsKey. At runtime a path will
be drawn (if enabled) using the walues defined by the wvalusEey. */

public wvoid declarePath (Cbhject walueFey, String pathSettingsEey)

J/*% Lesociates a value key to an indicator. */
poblic vold declarelndicator (Chject wvalueEey, String indicatorEevw)

S#% Declare a bar seguence associated with the given wvalue key. Setctings
for the bars are resolved using the pathSettingsEey. AC runtime a set
of bars will be drawn (if enabled) wusing the wvalues defined by the valusFevy. ™

public wvoid declareBars (Cbhject walueFey, String settingsEey)

"-’W"’m ‘&M,\#_g?g"

J/#**% Declare a signal with the given key and user readable string. */
poblic vold declareSignal (Cbhject kevy, S5tring label)

S*% Bdds & horizontal line to the graph using the information defined in Lineln
poblic vold addHorizontallLine (LineInfo info)

/*% Bets the top inset (in pixels). */
public void setTopInsetPixels (int pixels)
/**% Sets the bottom inset (in pizxels). */
poblic vold setBottominsetPixels (int pixels)

S#% S5ets the minimum tick for the vertical axi=s (if this i=s not an overlay).
Set to null (default) to automatically detect the min value. L
poblic vgid setMinTick (Double d)

2.6.1 Composite Studies

The majority of studies consist of either a single overlay or a single plot. Version 1.1 of the SDK allows
you to create studies that consist of multiple study plots and (optionally) overlays on the price plot.

Version 1.3 ©2019 MotiveWave™ Software Page 19 of 85

MotiveWave ™

SDK Programming Guide “ nOtlve aveﬂ*

The RuntimeDescriptor class enables you to define additional plots for a study. This class has been
enhanced in version 1.1 to allow the definition of additional plots using the new Plot class (see
com.motivewave.platform.sdk.study package).

The majority of methods on the RuntimeDescriptor class operate on the ‘default’ plot for the study. In
the case of an overlay, the default plot will be the plot where the overlay was added. For example,
when you add a simple moving average (SMA) to the price plot, the default plot for the overlay will be
the price plot.

Additional plots may be defined using the Plot class. Each plot has independent settings for labels, tabs,
range keys etc and elements are declared separately for each plot (ie paths, bars etc). The following
diagram illustrates the relationship between the RuntimeDescriptor and the Plot classes.

Figure 14 Runtime Descriptor and Plot classes

Plot
RuntimeDescriptor _name
+addPlot() -labelPrefix
+getPlot() -labelSettings
+getDefaultPlot() -tabName
+getPricePlot() -showLabel
+exportValue() -rangeKeys
+declareSignal() -topInsetPixels
+declarePath() @——————-bottominsetPixels
These +declareBars() 1 « |-minTick
delegate +declareGuide() -enabled
to the +declarelndicator() -
‘default’ +setLabelSettings() +declarePath()
plot +setRangeKeys() +declareBars()
|+addHorizontalLine() +declareGuide()
+...0) +declarelndicator()
+addHorizontalLine()

Two reserved plots are defined:
Plot.PRICE - represents the price plot.
Use this to add overlays on the price plot.
Plot.DEFAULT - represents the primary
study plot.

2.7 DataContext Interface

The DataContext interface provides access to historical data as well as utility methods for interacting
with the study framework.

The following diagram illustrates some of the useful methods:

Version 1.3 ©2019 MotiveWave™ Software Page 20 of 85

MotiveWave ™ motive_"ave@

SDK Programming Guide

Figure 15 - Data Context Interface

package com.motivewave.platform.sdk.common;

f*% Thiszs context provides an access point to services relating to data. */f
public interface DataContext

{
JS*% Gets the primary data series. */

DataSeries getDataSeries|():

f*% Gets additional data series obijects of a different bar size. */
DataSeries getDataSeries (BarSize barSize);

f*¥% Gets the instrument associated with this context. */
Instrument getInstrument () ;

f*% Triggers a signal with the given key, message and value.

iparam index index of the bar that triggered this =ignal. HNote: =ignals
are only fired for the current bar when it i= completed
iparam signalKey event name of the alert (displaved to user)
iparam message describes the signal (dislayed to the user, if an alert)
iparam value wvalue that triggered the alert (displayed to user) *
vold signal (int index, Cbkbject signalEey, String message, Cbhject wvalue);

f*% @Greturn true if this is regular trading hours (rth). */
boolean isRTH():

f** Gets the current time. Thisz iz the time synchronized with
the Broker/Data Service (if supported by the underlying service). #/

long getCurrentTime () ;

2.8 DataSeries Interface

Hote: An actual =signal is only triggered if =ignals have been configured.

‘“-thihidhnun-ulﬁnﬂi!-dhnnh-ﬂ—J"-h\J'FE\uuq"hlw‘kﬁ4'"““*‘*‘1ullﬁa"*ﬁhhu"ﬂtﬁ

The primary objective of the DataSeries interface is to provide a repository for historical price data and

data generated by the study. Data stored in this interface is accessed by a numerical index which

represents the price bar where the data applies.

The following diagram illustrates the structure of the data in the data series. Essentially the datais an

array of tables where the index ‘0’ is the first (oldest) bar and index ‘size()-1’ is the latest bar.

Version 1.3 ©2019 MotiveWave™ Software Page 21 of 85

MotiveWave™ .
SDK Programming Guide 4ﬂ0tlve ave

Figure 16 - Data Structure

[0] [index] [size()-1]
=
Open Open Open
High High High
Low Low L Historical Low
Close Close Data Close
Volume Volume Volume
Open e Open et Open
Interest Interest) Interest
ATR ATR ATR
True True Derived True
Range Range Data Range
Values. Values. Values.
RSI RSI Computed RSI
Values. Values. by Study Values.
MACD MACD MACD

The DataSeries interface also contains a number of convenience methods for calculating common values
such as moving averages, swing points and lowest or highest values.

Version 1.3 ©2019 MotiveWave™ Software Page 22 of 85

MotiveWave™

SDK Programming Guide motive_"ave@

Figure 17 - DataSeries Interface
package com.motivewave.platform.sdk.common;

Jl,l':?c:éc

£

Represents a series of price bars that are displayed on a chart.

Values of the price bars are accessed by specifying the index when retrieving a value
Study values are stored in this structure as they are computed by a study.

* This interface also provides many convenience method for calculating moving averages,
* swing points, highest high, etc.

:éch,-'

public interface DataSeries

{

k.

*

J** Gets the number of elements in this data series.
f@return the number of elements in this data series. */
int size();
J** Gets the size of the bars in this data series. @return the bar size of this data
BarSize getBarSize();
/** Gets the type of data available in this data series. @return the type of bar data
Enums.BarData getBarData();
f** Gets the instrument for the data in this data series. @return the instrument for t
Instrument getInstrument();
/** @return the high value of the price bar at the given index. */
float getHigh(int index);
/** @return the low wvalue of the price bar at the given index. */
float getlow(int index);
/** @return the open value of the price bar at the given index. */
float getOpen(int index);
J** @return the close wvalue of the price bar at the given index. */
float getClose(int index);
/** @return the volume of the price bar at the given index. */
long getVolume(int index);
/** @return the start time (in millis) of the bar at the given index. */
long getStartTime(int index);
f** Calculates a Moving Average. MNull values and wvalues of Double.MNal are ignored in
Double ma(Enums.MAMethod method, int index, int period, Object key);
/** Calculates the average true range based on the most recent complete bars. */
Double atr(int period);
/** Returns the highest wvalue over the given sequence of wvalues. Null wvalues and wvalue
Double highest(int index, int period, Object key);
J** Returns the lowest wvalue over the given sequence of values. Null values and values
Double lowest(int index, int period, Object key);
J** Calculates and returns a list of swing points of a given strength or greater. */
List<SwingPoint> calcSwingPoints(beolean top, int strength);

2.9 Multiple Instruments

Version 1.1 of the SDK offers support for multiple instruments. This allows you to retrieve real time and
historical data for one or more instruments (beyond the primary instrument) for studies and strategies.
For strategies you may also place orders for multiple instruments (see section on strategies).

Version 1.3 ©2019 MotiveWave™ Software Page 23 of 85

MotiveWave™

SDK Programming Guide ‘nOtive ave

Please Note: Not all editions of MotiveWave™ include support for multiple instruments. In these cases,
studies requiring multiple instruments will not be accessible to the end user.

2.9.1 Design Time

Usage of multiple instruments requires the declaration of this feature in the StudyHeader and usage of
the InstrumentDescriptor to declare the instruments that will be used at run time.

There are essentially two items that are necessary to enable multiple instruments as part of the design
time:

1. Declare support for multiple instruments — In the StudyHeader set the attribute
multipleinstrument=true

2. Declare one or more instruments in the initialize() method — Use the InstrumentDescriptor to
declare one or more instruments. For details on how to use this class, see the API
documentation.

The following code snippet illustrates the usage of the ‘multipleinstrument’ attribute in the built-in
Spread study:

Figure 18 Multiple Instrument StudyHeader

J** Instrument Spread */

@StudyHeader(
namespace="com.motivewave",
id="5SPREAD",

rb="com.motivewave.platform.study.nls.strings",
name="TITLE_SPREAD",
desc="DESC_SPREAD",

menu="MENU_INSTRUMENT",
overlay=false, This attribute must }

multipleInstrument=true, be set to true
requiresBarUpdates=true)
public class 5pread extends com.motivewave.platform.sdk.study.S5tudy

{

Version 1.3 ©2019 MotiveWave™ Software Page 24 of 85

MotiveWave™
SDK Programming Guide

Figure 19 InstrumentDescriptor

motivelave’

{
enum Values { SPREAD };

final static String MULTIPLIERI
final static String MULTIPLIERZ2

@verride
public void initialize(Defaults
{
SettingsDescriptor sd =
5etSett1ng5D95cr1ptor(sd},
SettingTab tab = new Sg
sd.addTab{tab);

SettingGroup inputs
inputs.addRow{new
inputs.addRow{new
inputs.addRow(new
inputs.addRow(new
inputs. addRow{new

tab.addGroup(inputs);

public class Spread extends com.motivewave.platform.sdk.study.S5tudy

"multiplierl”;
"multiplier2”;

defaults)

new SettingsDescriptor();

"));
Use the InstrumentDescrptor
to declare and allow users to
choose instruments. TNPUTS"));

In5trumentDe5cr1pt0r(InputS IHETRUMEHTI get("LBL_ INSTRUMENTi“}}},
DoubleDescriptor(MULTIPLIERI, get(“LBL MULTIPLIER"), 1.8, .01, 100
InstrumentDescriptor{Inputs.INSTRUMENTZ, get("LBL_INSTRUMENT2")));
DoubleDescriptor(MULTIPLIER2, get("LBL MULTIPLIER"), 1.0, ©.81, 100

The following screen shot demonstrates how the InstrumentDescriptor enables the user to choose the

instrument when they create the study

Figure 20 Instrument Input

Spread x

Computes and displays the difference between two instruments and displays it as a graph. Use the multipliers to
adjust the generated values.
Options
Inputs
Instrument 1: - /| Chart Instrument

Multiplier-
Instrument 2: | EURMSD ~|| Instrument Inputs

Multiplier-

Operation: | Subtract(-)

Invert:
Display
PriceBar, [~
Indicator: | 1 - Line v/| Display
Create || Save Defaults || Cancel
Version 1.3 ©2019 MotiveWave™ Software Page 25 of 85

MotiveWave™

SDK Programming Guide ‘nOtive ave

2.9.2 Run Time

Several enhancements have been added to the SDK to enable access settings and historical/real time
information in the run time portion of the study:

1. Settings —a new method getinstrument(key) on the Settings class allows you to retrieve the
instrument that the user chose when they created (or modified) the study.

2. DataSeries — several new methods have been added to the DataSeries interface for retrieving
information. Essentially, these are overloaded methods of getDouble(...), getHigh(...), getLow(...)
getClose(...) etc.

The following code snippet from the Spread study shows how to retrieve chosen instruments and
historical data from the DataSeries interface:

Figure 21 Spread calculate method
public class Spread extends com.motivewave.platform.sdk.study.Study

d

@verride

protected void calculate(int index, DataContext ctx)

1
Enums . BarInput input = (Enums.BarInput)getSettings().getInput({Input
Instrument instrl = getSettings().getInstrument(Inputs.INSTRUMENT,
Instrument instr2 = getSettings().getInstrument(Inputs.INSTRUMENTZ2
double multl = getSettings().getDouble(MULTIPLIERI, 1.8);
double mult2 = getSettings().getDouble(MULTIPLIERZ, 1.8);
DataSeries series = ctx.getDataSeries();

Get the instruments
chosen by the user

Get the double value
Double valuel = series.getDouble(index, input, instrl); defined by ‘input’ (ie !r

if (valuel == null) { h?gh. I_Dw etc) for the
. given instrument
return;

}

Double value2 = series.getDouble(index, input, instr2);
if (value2 == null) {
return,;

}

double spread = valuel®*multl - wvalue2®*multl;
series.setDouble(index, Values.SPREAD, spread);

if (index < 1) return;
Doubl = i

2.10 Custom Context Menu

Support for custom context menus was added in version 5.3 of MotiveWave. This feature enables a user
to interact with a study without having to open the study dialog. The following screen shot shows an
example of a custom context menu in the Trend Line study example. In this example two additional
items have been added to the context menu:

Version 1.3 ©2019 MotiveWave™ Software Page 26 of 85

MotiveWave™

SDK Programming Guide antive ave

1. Extend Left — Extends the trend line to the left of the screen
2. Extend Right — Extends the trend line to the right of the screen

BTC/USD -1 day | H20000.00
Trend Line
118000.00
=16000.00

=14000.00

Right click h“ﬂ

|| ” on Study J'|

l 1191374
++$+ 14 'I %
!H \é:?élwltigend ' - These default 10207 43
I -
i Edit

items can be

T'ﬂ-ul Delete hidden

. i @ Hide Component
Ry r . +|

,,I' * ' Extend Left
PP, MO | * v Extend Right Custom Context -J6000.00
H_l T Menu ltems
et

-8000.00

I
]
P ! 400000
MotiveWave :
Oct-2017 Octl-ll Nov-2017 No\:v-ﬁ Dec-2017 Deé-ﬂ Jan-IZDIS Jan|-1l Feb-2018 FeI;-H
COFA@(83) 1min 5min 10min 15min 20min 30min 45min 1hour 2hour 6hour 1day 1week >3 EvEYy=ElEvy@ v+ ®

The following excerpt from the TrendLine example study class demonstrates how to add custom menu
items. You can use the “plotName” (for composite studies) and “loc” parameters to customize the items
depending on where the context menu is requested (where the user does the right click).

Whenever a menu item is invoked the study is recalculated. Typically the ‘action’ part of the menu item
is to modify a setting in the study. When the study is recalculated, it will pick up the change to the study
settings.

Figure 22 TrendLine Example Study

/** This study draws a trend line on the price graph and allows the user to move it using the resize points.
The purpose of this example is to demonstrate advanced features such as using resize points and context menus. */
@StudyHeader(
namespace="com.motivewave",
id="TREND_LINE",
rb="com.motivewave.platform.study.nls.strings",
name="Trend Line",
desc="This is an example study that draws a simple trend line and allows the user to resize it",
overlay=true)
public class TrendlLine extends com.motivewave.platform.sdk.study.Study
{
final static String START="start", END="end";
final static String EXT_RIGHT="extRight", EXT_LEFT="extleft";

@0verride
public void initialize(Defaults defaults)

{
¥

// Adds custom menu items to the context menu when the user right clicks on thi
@0verride
public MenuDescriptor onMenu(String plotName, Point loc, DrawContext ctx)
{
List<MenuIltem» items = new Arraylist();
items.add(new MenuSeparator());
// Add some menu items for the user to extend right and left without having to open the study dialog
boolean extleft = getSettings().getBoolean(EXT_LEFT);
boolean extRight = getSettings().getBoolean(EXT_RIGHT);

QOverride onMenu() to
add custom items to
the Context Menu

// Note: the study will be recalculated (ie call calculateValues(), see below) when either of these menu items is invoked by the user
items.add(new Menultem("Extend Left", extlLeft, () -> getSettings().setBoolean(EXT_LEFT, lextleft))); [

items.add(new Menultem("Extend Right", extRight, () -» getSettings().setBoolean(EXT_RIGHT, lextRight)));

return new MenuDescriptor(items, true);

Use the Menultem class
to define a menu item

Version 1.3 ©2019 MotiveWave™ Software Page 27 of 85

MotiveWave™

SDK Programming Guide ‘nOtive ave

The following diagram illustrates the classes used to define custom context menus for a study.
Submenus can be created by using the Menu class (which contains a list of Menultem, ie ‘items’). The
MenuSeparator class may be used to add dividers to the menu. Finally the MenuDescriptor class is used
to describe the context menu. Use the ‘includeDefaultltems’ to show or hide the default menu items
that are displayed as part of the context menu.

Figure 23 Package: com.motivewave.platform.sdk.common.menu

Menultem MenuDescriptor
i menultems
checked !
disahled includeDefaultltems
action

Menu MenuSeparator

iterms

2.11 Miscellaneous Classes

The following diagram illustrates some additional classes that may be of interest. These classes are
available in the common package (com.motivewave.platform.sdk.common). For full details on these
and other classes, please consult the APl documentation.

Version 1.3 ©2019 MotiveWave™ Software Page 28 of 85

MotiveWave™

SDK Programming Guide

Figure 24 - Miscellaneous Classes

motivewlave

Represents an
Enums Instrument instrument. Contains
-BarData Encapsulates +getSymbol() methods for getting
-Barlnput enumeration classes +getTickSize() latest data,
-MAMethod into a single interface +getPointSize() calculating PnL,
-MarkerType (for convenience). +caIanL()' formatting etc.
-ShadeType +getLastPrice()
_Size +getBidPrice() X11Colors
-Position +getAskPrice() NDIAN RED
-Priority +round() CORAL™
-ValueType +format() GOLD
-TextAlign +..0 “KHAKI
:TextOutIlne Bar size. Includes -LIME
BarSize linear data (minutes) :
+getMinutes and non-linear such
+getlnterval(()) as Range, Renko, K ,
util ; Constant Volume, X11’ colors. Useful
i ili Hisintraday() Tick for setting default
+calcLatestMA() Contains utility +isRange() ick etc 9
. colors on lines,
+compare() methods for use +isRenko() had ‘
+toDouble() when developing +isVolume() shades etc.
+tolnt() studies. (consult API +isTick()
+in() documentation)
+max() System Defaults.
+min() Defaults Modstly Icontams fonts
+clipLine and colors as
+disptanc<2) :ge:_Fronttg | configured by the
+intersection() +ge Bexk olor() | user. Most of these
+midpoint() getBackgroundColor() come from the
+rotate() +getLineColor() current chart theme.
+slope() +getBaqulor()
.0 +getTopFillColor()
+getBottomFillColor()

+...0)

Version 1.3 ©2019 MotiveWave™ Software Page 29 of 85

MotiveWave™

SDK Programming Guide motive_"ave@

3 Overlay Example: ‘My Moving Average’

In this section we will create a very simple example called ‘My Moving Average’ that displays an
exponential moving average as a path on a plot.

Let’s start by looking at the code for this example:

package study examples;

import com.motivewave.platform.sdk.common.*;
import com.motivewave.platform.sdk.common.desc.*;
import com.motivewave.platform.sdk.study.*;

/** This simple example displays an exponential moving average. */
@StudyHeader (

namespace="com.mycompany",

id="MY MA",

name="My Moving Average",

label="My MA",

desc="This simple example displays an exponential moving average",
menu="My Studies",

overlay=true,

studyOverlay=true)
public class MyMovingAverage extends Study

{

enum Values { MA };

/** This method initializes the study by doing the following:
1. Define Settings (Design Time Information)
2. Define Runtime Information (Label, Path and Exported Value) */
@Override
public void initialize (Defaults defaults)
{
// Describe the settings that may be configured by the user.
// Settings may be organized using a combination of tabs and groups.
SettingsDescriptor sd = new SettingsDescriptor();
setSettingsDescriptor (sd);

SettingTab tab = new SettingTab ("General");
sd.addTab (tab) ;

SettingGroup inputs = new SettingGroup ("Inputs");

// Declare the inputs that are used to calculate the moving average.

// Note: the 'Inputs' class defines several common input keys.

// You can use any alpha-numeric string that you like.

inputs.addRow (new InputDescriptor (Inputs.INPUT, "Input", Enums.BarInput.CLOSE)) ;
inputs.addRow (new IntegerDescriptor (Inputs.PERIOD, "Period", 20, 1, 9999, 1));
tab.addGroup (inputs) ;

SettingGroup colors = new SettingGroup ("Display");

// Allow the user to change the settings for the path that will

// draw the moving average on the plot. 1In this case, we are going

// to use the input key Inputs.PATH

colors.addRow (new PathDescriptor (Inputs.PATH, "Path", null, 1.0f, null, true, true, false));
tab.addGroup (colors) ;

// Describe the runtime settings using a 'StudyDescriptor'
RuntimeDescriptor desc = new RuntimeDescriptor();
setRuntimeDescriptor (desc) ;

// Describe how to create the label. The label uses the

// '"label' attribute in the StudyHeader (see above) and adds the input values

// defined below to generate a label.

desc.setLabelSettings (Inputs.INPUT, Inputs.PERIOD);

// Exported values can be used to display cursor data

// as well as provide input parameters for other studies,

// generate alerts or scan for study patterns (see study scanner).

desc.exportValue (new ValueDescriptor (Values.MA, "My MA", new String[] {Inputs.INPUT, Inputs.PERIOD}));
// MotiveWave will automatically draw a path using the path settings

// (described above with the key 'Inputs.LINE') In this case

Version 1.3 ©2019 MotiveWave™ Software Page 30 of 85

MotiveWave ™ (no t ive ave’

SDK Programming Guide

// it will use the values generated in the 'calculate' method
// and stored in the data series using the key 'Values.MA'
desc.declarePath (Values.MA, Inputs.PATH);

}

/** This method calculates the moving average for the given index in the data series. */
@Override
protected void calculate (int index, DataContext ctx)
{
// Get the settings as defined by the user in the study dialog
// getSettings () returns a Settings object that contains all
// of the settings that were configured by the user.
Object input = getSettings () .getInput (Inputs.INPUT) ;
int period = getSettings () .getInteger (Inputs.PERIOD) ;

// In order to calculate the exponential moving average
// we need at least 'period' points of data
if (index < period) return;

// Get access to the data series.

// This interface provides access to the historical data as well
// as utility methods to make this calculation easier.
DataSeries series = ctx.getDataSeries();

// This utility method allows us to calculate the Exponential

// Moving Average instead of doing this ourselves.

// The DataSeries interface contains several of these types of methods.
Double average = series.ema(index, period, input);

// Calculated values are stored in the data series using

// a key (Values.MA). The key can be any unique value, but
// we recommend using an enumeration to organize these within
// your class. Notice that in the initialize method we declared

// a path using this key.
series.setDouble (index, Values.MA, average);

}
}

All studies must derive from the base class ‘Study’ (com.motivewave.platform.sdk.study.Study). This
class contains a number of methods that we can override (we will look at these in detail later). For the
purposes of this example, we will explore the following:

e StudyHeader
e initialize method
e calculate method

3.1 StudyHeader Annotation (@StudyHeader)

All studies must define a study header. This is an annotation that is placed before declaring the class:

Version 1.3 ©2019 MotiveWave™ Software Page 31 of 85

MotiveWave™

SDK Programming Guide ‘nOtive ave

Figure 25 - My MA Study Header
package study examples;

import com.motivewave.platform.sdk.common. =}
import com.motivewave.platform.=sdk.common.desc.®;
import com.motivewave.platform.=sdk.study.*;

S*% This simple example displavs a eXponential moving average. */f

B5tudyHeader { Unigue namespace. We
namespace="com.mnycomnpany"”, recommend using com.<org names

id="MY MA",

name="My HD*!W‘PQ be unique in]

label="My MA", thiz name=zpace

desc="Thi=s simple example displays an exponential moving average™,
menu="My Studies", Overlay study

overlay=troe, .- (price graph}

studyCverlay=true)

poblic class MyMovingfR®

Foexage extends Study ,
{ Can be overlaid on f
a study graph ’/

N e =

enum Values { MA }:»

SR W SO

There are a number of important items in this header:

e namespace — this is used to qualify related studies and avoid naming conflicts with studies
developed by third parties. It is recommended that you use a form similar to ‘com.<name of
your organization>’ Together with the id tag, these form a globally unique identifier for your
study

e id —this identifies your study and must be unique within your namespace

e name — This is the name of your study and is displayed in the study dialog as well as the study
menu

e label —This is used as part of the study legend (displayed in the top left corner of the plot
underneath the plot title). If not specified, the name attribute will be used.

e desc—This is the description of your study and is displayed in the study dialog

e menu — Identifies the menu (underneath the Study menu) where this study can be found

e overlay — If true indicates that this study will be an overlay displayed on another plot

e studyOverlay — Indicates that this study can be used as an overlay on a study plot.

3.2 initialize method

The ‘initialize’ method is used to perform any necessary initialization work when the study is created.
This method is given access to system defaults (such as colors or fonts) available through the ‘Defaults’
class (see API documentation for specific details). The most common usage of this method is to do the
following:

1. Describe Design Information (ie: inputs) — The SettingsDescriptor describes settings for the study
and how to display this to the user (in the Study Dialog).

Version 1.3 ©2019 MotiveWave™ Software Page 32 of 85

MotiveWave™

SDK Programming Guide antive ave

2. Describe Runtime Information — The StudyDescriptor describes information to MotiveWave™ so
it knows how to handle this study at runtime (ie label settings, paths, exported values etc).

Version 1.3 ©2019 MotiveWave™ Software Page 33 of 85

MotiveWave™

SDK Programming Guide mOtlveu"aVe

Figure 26 - My MA initialize method
poblic class MyMovinghverage extends Study

{

This enumeration

enum Values { MA }; defines the values

@0verride generated by this study.
public wvoid initialize (Defau
{

S Describe the settings that may be configured by the user.

Sf Settings may be organized using a combination of tabs and groups.
SettingsDescriptor 3d = new SettingsDescriptor():
setSettingsDescriptor(=d) ;

SettingTab tabk = new SettingTab ("General™) 'General tab

sd.addTab (tab) ;

SettingGroup inputs = new SettingGroup ("Inputs™):

S Declare the inputs that are used to calculate the moving average.
S Hote: the "Inputs' class defines several common input keys.

S ¥You can use any alpha-numeric string that yvou like.

inputs.addBow (new InputDescriptor (Inputs.INFUT, "Input"™, Enums.Barlnput.CLOSE)) !

inputs.addBow (new IntegerDescriptor (Inputs.FPFERICD, "Pericod"™, 20, 1,
tab.addGroup (inputs) ;

SettingGroup colors = new SettingGroup ("Display™): ‘Display’ group
S Bllow the user to change the settings for the path that wi

S draw the moving average on the graph. In this case, we are going

S to use the input key Inputs.PALTH

colors.addBow (new PathDescriptor (Inputs.PFATH, "PFath", nmll, 1.0f,
null, troe, trme, false));

tab.addGroup (colors) ‘Path’ settings

ff Describe the runtime settings using a '"StudyDescriptor’
EuntimeDeszcriptor desc = new RuntimeDescriptor():
zetRBuntimeDescriptor (desc) ;

ff Describe how to create the label. The label uses the
S "label' attribute in the S5tudyHeader (=ee above) a
ff defined below to generate a label.
dezsc.zgetlabelfSettings (Inputs. INFUT, Inputs.FPERICD) :
ff Exported values can be used to display cursor dat:
S as well as provide input parameters for other stud
ff omenerate alerts or =scan for study patterns [(see study
desc.exportValue (new ValueDeszcriptor(Values.Ma, "My MLW,
new String[] {Inputs.INFUT, Inputs.PERIOD})):

ff MotiveWave will automatically draw a path using the path settings
ff (described above with the key 'Inputs.LINE
P it will use the values generated in the °

i _ i i) draw a path using
Sf and stored in the data series using the k the stored value "MA*
dezsc.declarePath (Value=s.Ma, Inputs.PATH): and the settings in

e nm———— L e P ned® | INputs PATH

Exports the value
‘MA’ s0 it can be
used outside this
study

Scanner) .

Tells MotiveWave to

3.2.1 Design Time Information

User
Configurable

‘Settings”

9999, 1))

Runtime

‘Settings”

ut values

Version 1.3 ©2019 MotiveWave™ Software

Page 34 of 85

MotiveWave™

SDK Programming Guide ‘nOtive ave

In our case, we need two types of inputs in order to calculate our exponential moving average:

1. Input — By default we will use the closing price for the bar (Enums.Barlnput.CLOSE), but we will
allow the user to choose something different (if they desire).

2. Period — This is the number of bars to look back when computing the average

For convenience, we will also allow the user to modify properties of the ‘Path’ such as the line color,
style and weight.

The following diagram illustrates the Study Dialog that is presented to the user when they create or
modify our study. Notice how the information described in the StudyHeader and the SettingsDescriptor
are used to generate this dialog.

Figure 27 - Study Dialog

My Moving Average x
This simple example disnlavs an exponential moving average Bn a grapi;
SettingTab

General desc

General

Inputs
) From the InputDescriptor
Input: || Close - Input (notice the default
Perod: 20 v IntegerDescriptor value is Close)
Display for Period

Path: I ~ — 10 - - PathDescriptor
for Path

Create Save Defaults Cancel

The classes used in this section are available from the package
‘com.motivewave.platform.sdk.common.desc’. There are a number of classes in this package (see API
documentation for full details). In this example we are concerned with the following:

e SettingsDescriptor — This class encapsulates all of the settings

e SettingTab — Used to organize settings into ‘Tabs’ that are displayed in the Study Dialog

e SettingGroup — Organizes settings within a tab into logical groups

e Setting Descriptors — MotiveWave™ has many setting descriptors (base class SettingDescriptor).
The ones used in this example are:

o InputDescriptor — Inputs used to calculate values. Typically these are historical data
inputs such as open, high, low or close values, but may also include derived values (such
as weighted price) or values generated by other studies.

o IntegerDescriptor — Describes an integer input value. This can be constrained to a
specified range (1 — 9999 in this case)

o PathDescriptor — Describes how to render the path. In this case the user can choose the
line width, style and color

Version 1.3 ©2019 MotiveWave™ Software Page 35 of 85

MotiveWave™

SDK Programming Guide ¢ nOtlve ave

3.2.2 Run Time Information

Run time information is specified using the RuntimeDescriptor. For the purposes of our example, this
will include the following:

e Label Settings — Describes how to create and display the label (study legend) for this study. In
our case we want the label to include the Input and Period. For example, with an input of CLOSE
and a period of 20, the label will look like: ‘My MA(C,20)’

e Declare Path — Tell MotiveWave™ to create and draw a path using the information created by
the PathDescriptor and the values generated by the study

e Export Value — Exported values may be used for a number of purposes, most notably:

o Cursor Data — Displaying information in the Cursor Data Window

o Input for Other Studies — Exported values can be used as input to other studies

o Input for Alerts — Alerts can be created to be triggered off of study values

o Study Scan — When creating a study scanner, these exported values can be used to find
specific conditions.

The following screenshot displays what our study looks like at Runtime:

Figure 28 - My Moving Average
Lul USD/CAD 15m x | + [4= = 5~

USD/CAD - 15 min l
“* + 131500
H1.31400
1.31300
H1.31200
Cursor Data X 131100
Time 545]
High 1.31534 —:i;ggﬂ
Low 1.31466 .—3"
Open 1.31524 H : ggggg
Close 1.31494 :4
Volume 1127 . r1-30800
Range 6.8
= H1.30700
My MA(C....1.31427 ﬁ‘ Exported Value
Motive'Wave
1 1 1 1 1 1 1 1 1 1 1
18:00 20:00 22:00 Feb-10 2:00 4:00 6:00 8:00 10:00 12:00 14.00 Feb-12 17:00
imin Smin 10min (15min 20min 30 min 45min 1 hour 2hour 6hour 1day 1week 2week >3 = gy @ |+~ B

3.3 calculate method

This method is used to calculate the value(s) for a particular bar in the data series (identified by the
index parameter). This method is called by the ‘calculateValues’ method for every bar in the data series.
Alternatively, you could override the ‘calculateValues’ method if you want to handle the creation of all
values for the data series.

In this case we are going to do the following:

Version 1.3 ©2019 MotiveWave™ Software Page 36 of 85

MotiveWave™

SDK Programming Guide motive_"ave@

1. Retrieve the User Settings — ‘getSettings() returns a reference to the Settings object.

2. Get the DataSeries — This is the interface to the historical data and a repository for any values
computed by the study. This also contains several utility methods for computing values such as
moving averages.

3. Compute the EMA - this is done by calling the utility method ‘ema’ with the input specified by
the user.

4. Store the EMA in the data series — This value is stored at the given index using the key:
Values.MA

Figure 29 - My Moving Average calculate method

S*% This method calculates the moving average for the given index in the data series. */

BOverride

protected void calculate (int index, DataContext ctx)

{
// Get the settings as defined by the user in the study dialog
S/ getSettings() returns a Settings obiject that contains all

/f of the settings that were configured by the user.
°Dbject input = getSettings{).getInput (Inputs.INFUT) ;
int period = getSettings().getInteger (Inputs.PERIOD) ;

Inputs specified
by the user in the
Study Dialog

/f In order to calculate the exponential moving average
/f we need at least 'period' points of data
if (index < period) retorn;

Jf Get access to the data series.
/f This interface provides access to the hist
S/ as utility methods to make this calculat?
DataSeries series = ctx.getDataSeries():

DataSeries interface
provides access to
the historical data
among other things

€
Jf This utility method allows us to calculate the Exponential /

Jf Moving Average instead of doing this ourselves.

Litility method
calculates the
EMA for us.

/f Calculated walues are stored in the data series using

/f The DataSeries interface contains several of these
enuuble average = series.ema(index, period, input):

Jf a key (Values.MA). The key can ke any unigue wvalue, but
ff we recommend using an enumeration to organize these within
// wour class. Notice that in the initialize met

Save the calculated

f/ & path using this kev.
Qseries .setDouble (index, Values.Mi, average); value, using the key
Values MA

Yk ’u.--h) . M ».. 7 - W S

Version 1.3 ©2019 MotiveWave™ Software Page 37 of 85

MotiveWave™

SDK Programming Guide motive_"ave@

4 Study Plot Example: ‘Simple MACD’

In this example we are going to create a Study Plot based on a simple MACD. Note: if you would like a
more comprehensive MACD example, you can look at the source code for the MACD indicator that exists
within MotiveWave™.

MACD stands for ‘Moving Average Convergence/Divergence’ and was written by Gerald Appel in the
1970s. If you would like more information on this study go to: http://en.wikipedia.org/wiki/MACD.

Here is a screen shot of what this study looks like:
Figure 30 - Simple MACD

Latid MSFT - Primary Analysis - 15 min o3oRL A 4
File Edit Wiew Study Strategy Format Window Help
MSFT ~Qlk M s> @ K e werQ i+ T 2 [15mn ~ | >
MSF;FT -15 min le4.40
!' | I (EE30
! ! : i d6a.
T LT
]
; ; ; l ; H63.80
e T
*’ | “m i ‘ i
TJ.' u“* b ! \ i i +J.+TH . T |
! ! b !
m .m hl# mTl' ' IVI 'Y 163.40
MotiuéeWave ! MACD Path !

1 : Signal Path

Feb07 1200 1400 Feb08 1200 1400 Feb0d 1
simple MACD(C,12,26,9)

1
D0 14:00 1 p1ACD Indicator

T Label e —
[== i

1min Smin 10min 15min 20min 30min 45min 1 hour 2hour 6hour **g = @ @ |=+ B
Feb-10 18:14:06

Here is a screen shot of the Study Dialog that the user will use to configure the Simple MACD:

Version 1.3 ©2019 MotiveWave™ Software Page 38 of 85

http://en.wikipedia.org/wiki/MACD

MotiveWave ™ motlve _"ave®

SDK Programming Guide

Simple MACD

Irposes.

x

MacDPath: | - — 15~ — ~ v/ | Display
SignalPath: | - — 10~ — ~ V| Display
Bar Color: | [N ~ v/ | Display

Indicators

Setting Group

Indicators

MACD Ind: 1IN - Line /| Display

Signal Ind: Display

Hist Ind: Display
Update Remove Save Defaults Cancel

Let us start by looking at the source code for this study:
package study examples;

import com.motivewave.platform.sdk.common.*;
import com.motivewave.platform.sdk.common.desc.*;
import com.motivewave.platform.sdk.study.*;

/** Simple MACD example. This example shows how to create a Study Plot
that is based on the MACD study. For simplicity code from the
MotiveWave MACD study has been removed or altered. */
@StudyHeader (
namespace="com.mycompany",
id="SimpleMACD",
name="Simple MACD",
desc="This is a simple version of the MACD for example purposes.",
menu="My Studies",
overlay=false)
public class SimpleMACD extends Study
{
// This enumeration defines the variables that we are going to store in the
// Data Series
enum Values { MACD, SIGNAL, HIST };
final static String HIST IND = "histInd"; // Histogram Parameter

/** This method initializes the settings and defines the runtime settings. */
@Override
public void initialize (Defaults defaults)
{
// Define the settings for this study
// We are creating 2 tabs: 'General' and 'Display'
SettingsDescriptor settings = new SettingsDescriptor();
setSettingsDescriptor (settings);
SettingTab tab = new SettingTab ("General");
settings.addTab (tab) ;

// Define the 'Inputs'

SettingGroup inputs = new SettingGroup ("Inputs");

inputs.addRow (new InputDescriptor (Inputs.INPUT, "Input", Enums.BarInput.CLOSE)
inputs.addRow (new IntegerDescriptor (Inputs.PERIOD, "Period 1", 12, 1, 9999, 1)
inputs.addRow (new IntegerDescriptor (Inputs.PERIOD2, "Period 2", 26, 1, 9999, 1
inputs.addRow (new IntegerDescriptor (Inputs.SIGNAL PERIOD, "Signal Period", 9,
tab.addGroup (inputs) ;

;
;
)

)
)
)
1, 9999,

1))

Version 1.3 ©2019 MotiveWave™ Software

Page 39 of 85

MotiveWave™
SDK Programming Guide

}

tab = new SettingTab ("Display");
settings.addTab (tab) ;
// Allow the user to configure the settings for the paths and the histogram
SettingGroup paths = new SettingGroup ("Paths");
tab.addGroup (paths) ;
paths.addRow (new PathDescriptor (Inputs.PATH, "MACD Path",
defaults.getLineColor (), 1.5f, null, true, false, true));
paths.addRow (new PathDescriptor (Inputs.SIGNAL PATH, "Signal Path",
defaults.getRed(), 1.0f, null, true, false, true));
paths.addRow (new BarDescriptor (Inputs.BAR, "Bar Color", defaults.getBarColor(), true,
// Allow the user to display and configure indicators on the vertical axis
SettingGroup indicators = new SettingGroup ("Indicators");
tab.addGroup (indicators) ;
indicators.addRow (new IndicatorDescriptor (Inputs.IND, "MACD Ind",
null, null, false, true, true));
indicators.addRow (new IndicatorDescriptor (Inputs.SIGNAL IND, "Signal Ind",
defaults.getRed(), null, false, false, true));
indicators.addRow (new IndicatorDescriptor (HIST IND, "Hist Ind",
defaults.getBarColor (), null, false, false, true));

RuntimeDescriptor desc = new RuntimeDescriptor();
setRuntimeDescriptor (desc) ;

motivelave’

true));

desc.setLabelSettings (Inputs.INPUT, Inputs.PERIOD, Inputs.PERIODZ2, Inputs.SIGNAL PERIOD);

// We are exporting 3 values: MACD, SIGNAL and HIST (histogram)
desc.exportValue (new ValueDescriptor (Values.MACD, "MACD", new Stringl[]
{Inputs.INPUT, Inputs.PERIOD, Inputs.PERIODZ2}));
desc.exportValue (new ValueDescriptor (Values.SIGNAL, "MACD Signal",
new String[] {Inputs.SIGNAL PERIOD}));
desc.exportValue (new ValueDescriptor (Values.HIST, "MACD Histogram", new String[]
{Inputs.PERIOD, Inputs.PERIODZ, Inputs.SIGNAL PERIOD}));
// There are two paths, the MACD path and the Signal path
desc.declarePath (Values.MACD, Inputs.PATH);
desc.declarePath (Values.SIGNAL, Inputs.SIGNAL PATH) ;
// Bars displayed as the histogram
desc.declareBars (Values.HIST, Inputs.BAR);
// These are the indicators that are displayed in the vertical axis
desc.declareIndicator (Values.MACD, Inputs.IND);
desc.declareIndicator (Values.SIGNAL, Inputs.SIGNAL IND);
desc.declareIndicator (Values.HIST, HIST IND);

// These variables are used to define the range of the vertical axis
desc.setRangeKeys (Values.MACD, Values.SIGNAL, Values.HIST);

// Display a 'Zero' line that is dashed.

desc.addHorizontallLine (new LineInfo (0, null, 1.0f, new float[] {3,3}));

/** This method calculates the MACD values for the data at the given index. */
@Override
protected void calculate (int index, DataContext ctx)

{

int periodl = getSettings().getInteger (Inputs.PERIOD) ;

int period2 = getSettings().getInteger (Inputs.PERIOD2) ;

int period = Util.max(periodl, period2);

if (index < period) return; // not enough data to compute the MAs

// MACD is the difference between two moving averages.

// In our case we are going to use an exponential moving average (EMA)
Object input = getSettings () .getlInput (Inputs.INPUT);

DataSeries series = ctx.getDataSeries();

Double MAl = null, MA2 = null;

MAl = series.ema (index, periodl, input);
MA2 = series.ema (index, period2, input);
if (MAl == null || MA2 == null) return;

// Define the MACD value for this index
double MACD = MAl - MA2;
series.setDouble (index, Values.MACD, MACD) ;

int signalPeriod = getSettings () .getlInteger (Inputs.SIGNAL PERIOD) ;
if (index < period + signalPeriod) return; // Not enough data yet

Version 1.3 ©2019 MotiveWave™ Software

Page 40 of 85

MotiveWave™

SDK Programming Guide ‘nOtive ave

// Calculate moving average of MACD (signal path)

Double signal = series.sma(index, signalPeriod, Values.MACD);
series.setDouble (index, Values.SIGNAL, signal);

if (signal == null) return;

// Histogram is the difference between the MACD and the signal path
series.setDouble (index, Values.HIST, MACD - signal);
series.setComplete (index) ;
}
}

4.1 StudyHeader Annotation (@StudyHeader)

The main difference in the study header from the previous example is the ‘overlay’ tag is set to false.
This indicates to MotiveWave™ that this study should be displayed in a separate study plot. You will
notice here as well that we have included some HTML markup in the ‘desc’ tag. The description
displayed in the Study Dialog supports HTML so you can put any valid HTML tags here (do not include
JavaScript, this is not supported).

Figure 31 - Simple MACD Study Header
package study examples;

"

import com.motivewave.platform.sdk.common. *; I
import com.motivewave.platform.=sdk.common.desc.*; .
import com.motivewave.platform.sdk.study.*; ?
S¥% SBimple MACD example. This example shows how to create a Study Graph g
that is based on the MACD study. For simplicity code from the !"
MotiveWawve MACD =tudy has been removed or altered. */ ‘

L

)

StudyHeader (
namespace="com.nycomgany"” ,
id="S5impleHMnacD",
name="5imple MACD™,
desc="This i= a =simple wersion of the MACD=/b> for example purposes.",

Mote: HTML tags
are permissible here

menu="My Studies", : .
overlay=Ffalse) —— —f!_ndmates that this

public class SimpleMACD extends Study _° 2 Study Graph

{=-‘w-‘ ".\"\“““ "F-J.\'“‘r -"‘-.___ --.*ﬁ’"._‘-,*“l-"-m"

4.2 initialize method

We have defined a bit more in the initialize section from the previous example. To illustrate the usage
of tabs, we have created 2 tabs: ‘General’ and ‘Display’. We have also defined the bars for the
histogram (see BarDescriptor).

Indicators are displayed on the vertical axis (right side of the screen). By default, we are only going to
show the first indicator (MACD), but we will allow the user to show indicators for the current signal
value as well as the histogram. For this we will use the IndicatorDescriptor and set the values
accordingly. We have organized these into a Setting Group called ‘Indicators’

The following screen shot (with markup) shows the part of the initialize method where we are describing
the settings for the study:

Version 1.3 ©2019 MotiveWave™ Software Page 41 of 85

MotiveWave™

SDK Programming Guide motive_"ave@

Figure 32 - Simple MACD initialize settings

/** This method initializes the settings and d]
Defaults class provides access to

default colors, fonts etc. These
values can change depending on
user settings (ie Theme, or other
settings in Preferences)

BCverride
public vold initialize (Defaults defaults)
{

f Define the settings for this study

/ We are creating 2 tabs: '"General' and 'Di
SecttingsDescriptor =settings = new SettingsDescriptor():

setSettingsDescriptor (settings) !
SettingTab tab = new SettingTab ("General"): ‘General tab

settings.addTab (tab) ;

f Define the 'Inputs'
SettingGroup inputs = new SettingGroup ("Inputs™):;
inputs.addRow (new InputDescriptor (Inputs.INPFUT, "Input”, Enums.BarInput.CLOSE)) ;!
inputs.addRow (new IntegerDescriptor(Inputs.PERICD, "Period 1", 12, 1, 99933, 1)):
inputs.addRow (new IntegerDescriptor (Inputs.PFERICODZ, "Period 2", 26, 1, 9999, 1)):
inputs.addRow (new IntegerDescriptor(Inputs.SIGNAL PERICD, "Signal Pericd"”,

9, 1, 99939, 1)):

tab.addGroup (inputs) ;

tab = new SettingTab ["Display"™): ‘Display tab

settings.addTab (tab) ;

'f Lllow the user to configure the settings for the paths and the histogram

SettingGroup paths = new SettingGroup ("Paths");

tab.addGroup (paths) ;

paths.addRow (new PathDescriptor (Inputs.PATH, "MACD Path™,
defaults.getlineColor(), 1.5f, nunll, troe, fal=se, “troe)):;

paths.addRow (new PathDescriptor (Inputs.SIGNAL PATH, "Signal Path",
defaults.getBed(), 1.0f, null, trome, false, t© 1l

MACD and
Signal Paths

paths.addRow (new BarDescriptor {Inputs.BAR, "Bar Color™, This describes the
defaults.getBarColor (), true, true)): historgram bars
/ Bllow the user to display and configure indicators on thPFTrerTICET OXTS
SettingGroup indicators = new SettingGroup ("Indicators™);
tab.addGroup (indicators) ;
indicators.addRow (new IndicatorDescriptor (Inputs.IND, "MACD Ind", This section
nnll, null, false, troe, troe)): describes the

indicators.addRow (new IndicatorDescriptor (HIST IND, "Hist Ind", vertical axis.

indicators.addRow (new IndicatorDescriptor(Inputs.SIGNAL IND, "Signal In|indicators that are
defaults.getRed (), nmll, false, false, trume)):; displayed on the

defaults.getBarColor(), nnll, false, false, truoe)):

<

Next, we need to describe the runtime parameters using the RuntimeDescriptor. For the label, we want

to append the input, period, period2 and the signal period.
In this case, we are going to export 3 values: MACD, SIGNAL and HIST.

In order to display the histogram as bars, we use the ‘declareBars’ method on the study descriptor. This

will tell MotiveWave™ to show vertical bars using the BarDescriptor identified by Inputs.BAR.

Version 1.3 ©2019 MotiveWave™ Software Page 42 of 85

MotiveWave™

SDK Programming Guide motive —"ave@\

Figure 33 - Simple MACD initialize runtime

f*% This method initializes the settings and defines the runtime settings. */
E0verride
public vold initialize (Defaults defaunlts)

{
Define the settings for this =study
{ We are creating 2 tabs: '"General' and 'Display’
SettingsDescriptor settings = new SettingsDescriptor():

setSettingsDescriptor (settings) ;

EuntimeDescriptor desc = new RuntimeDescriptor():

setRBuntimeDescriptor (desc) ;

desc.setlabelSettings (Inputs. INFUT, Inputs.PERICD,
Inputs.PERICDZ, Inputs.SIGNAL PERICD) ;

- T -

f We are exporting 3 wvalues: MACD, S5IGHAL and HISE

Export Values.
These can be
displayed in the
Cursor Data

Window or used as
desc.exportValue (new ValueDescriptor (Values.MACD, "MACE™, new Stinmﬂﬁtuumer

{Inputs.INFUT, Inputs.FPFERICOD, Inputs.FPERICDE})) studies.
desc.exportValue (new ValueDescriptor (Values.SIGNAL, "MACDY Signa

new S5tring[] {Inputs.SIGNAL PERTOD})):
desc.exportValue (new ValueDescriptor(Values.HIST, "MACD Histogram", new Strim;ﬂ'

{Inputs.PERICD, Inputs.PERTICDZ, Inputs.SIGNAL PERTOD})) ;

ihistggfam)

*

There are two paths, the MACD path and the S5ignal path

desc.declarePath (Values.MACD, Inputs.PATH): Declare Paths :
desc.declarePath (Values.SIGNAL, Inputs.SIGNAL PATH) ; /

Bars displaved a=s the histogram
dezsc.declareBars (Values.HIST, Inputs.BaR);
ff These are the indicators that are displayed in the wvertical axis
desc.declarelIndicator (Values .MACD, Inputs.IND):
desc.declareIndicator (Values.SIGNAL, Inputs.SIGNAL TND):
desc.declarelndicator (Values.HIST, HIST IND);

/

Declare the
Indicators

This values
determine the range
of the vertical axis

The=ze wariablez are used to define the range of the wvertic
desc.setRangeleys (Values . MACD, Values.SIGNAL, Values.HIST);

Display a '"Zero' line that is dashed.
deac.addHorizontalline (new LineInfo (0, nnll, 1.0f, new flocat[] {3,3})):

4.3 calculate Method

The calculate method is used to compute the values for each historical bar in the data series. In our
case, we are going to do the following:

1. Retrieve User Settings — these are accessed from the getSettings() method.

2. Compute and Store the MACD — The DataSeries object contains the historical data as well as the
utility methods for computing moving averages. The MACD value is stored in the data series at
the given index using the key Values.MACD.

Version 1.3 ©2019 MotiveWave™ Software Page 43 of 85

MotiveWave™

SDK Programming Guide motive —"ave@\

3. Compute and Store the signal — The signal is a moving average of the MACD. Use the data series
to compute the moving average with Values. MACD as the key. The signal value is stored in the
data series at the given index using the key: Values.SIGNAL.

4. Compute and store the histogram — The histogram is simply the difference between the MACD
and the signal. This is stored in the data series at the given index using the key: Values.HIST.

5. Mark the index as ‘Complete’ - Finally, indicate that this index is ‘complete’. This allows
MotiveWave™ to cache these values (to improve performance).

Figure 34 - Simple MACD calculate method

S*% This method calculates the MACD walues for the data at the given i
A0verride

protected volid calculate (int index, DataContext ctx)

{

Qint periodl = getSettings () .getInteger (Inputs. FERICD) ; '

i

int periodZ2 = getSettings () .getlnteger (Inputs.PERICDI)

int period = Util.max(periodl, period2); Make sure we have

if (index « period) retmrn; // not enough dafenough datato
compute the MACD

f MACD iz the difference between Ttwo mMoving
In our case wWwe are going to use an exponential moving average (E!
Cbject input = getSettings () .getInput (Inputs.INFPUT) ;

DataSeries series = ctx.getDataSeries () The DataSeries provides

Double MAL1 = pumll, MAZ = nmll; access to historical data,

utility methods and is a

QHAI = series.ema(index, periodl, input): container for values
Mnz

= series.ema (index, periodZ, input): \HEUmDUMUbymEBHMF
if (MA1 == nmnll || HMAZ =— nnll) retorn;

Define the MACD walue for this index MACD is the difference

double MACD = MA1 — MAZ2; between the two }

zeries.setlDouble (index, Values.MACD, MACD); moving averages

eint signalPeriod = getSettings () .getInteger (Inputs.SIGNAL PERIOD) :
if (index « period + =signalPericod) return; // Hot enough data yet

Calculate moving average of MACD (signal path)
Double =signal = series.sma(index, signalPeriod, Values.MACD):
series.setDouble (index, Values.SISNAL, =signal);
if (=ignal = nunll) retuorn;

The signal is the moving
average of the MACD

ff Histogram is the difference between the MACD and the signal path
Qseries.setﬂnuble:index, Value=s.HIST, MACD - =ignal):;

9 series.setComplete (index); Tell MotiveWave that it is
ok to cache these values
H faor this index

'mqj"““‘“~l'k_""\'.'i"‘h d"”"-bxywi'“‘rnqqi_h lﬂ‘ulptd'“uuud.'Fl

Version 1.3 ©2019 MotiveWave™ Software Page 44 of 85

MotiveWave™

SDK Programming Guide antive ave

5 Drawing Figures

The draw package (com.motivewave.platform.sdk.draw) contains classes for drawing figures (markers,
lines etc) as part of the study. Additional classes will likely be added to this package as the SDK evolves.

All figures have one or more Coordinate values (see common package) that are used to specify the
location of the figure. These coordinates are composed of a ‘real’ time and value that are translated to
plot (x,y) points before they are drawn.

Figure 35 - draw classes

Coordinate

. , - time O
ou can create your own . value

figures by deriving from th
F%ure class DrawContext

+translate()

Figure Text +isSelected()
is\Visi text +getBarWidth()
isVisible() font +getBounds()
contains() textColor +getSettings()
layout() +getTickHeight()
draw() draw() +getDefaults()
getPopupMessage() layout()
setPopupMessage() contains()

A

|Line| |Bux| |Pnlygcn‘ |Cu|orﬁange| |ResizePDint| |SingIePDintFigure|

A

abel] [vrker

The following methods are available on the Study class for working with figures:

e clearFigures() — clears all figures from the study

e addFigure(Figure f) - adds a figure to the study

e removeFigure(Figure f) — removes an existing figure

e getFigures() — gets all of the figures added to the study

5.1 Figure Class

The Figure class is the base class for all figures that may be drawn as part of the study. You may derive
from the class to create a custom figure to display as part of the study. This class consists of the
following methods:

Version 1.3 ©2019 MotiveWave™ Software Page 45 of 85

MotiveWave™

SDK Programming Guide ‘ nOtlve ave

1. isVisible(DrawContext ctx) — returns true if this figure is currently visible in the given draw
context. This is used by the study framework to improve performance by only working with
figures that are currently visible.

2. contains(double x, double y, DrawContext ctx) — returns true if the figure contains the given
(x,y) coordinates. This is used by the study framework to determine if the mouse pointer is
currently above the study (and is selectable).

3. layout(DrawContext ctx) — This method is used to prepare the figure to be drawn. Typically
coordinates are translated to plot values (x,y pixel locations) and any intermediate draw figures
are created.

4. draw(Graphics2D gc, DrawContext ctx) — This method draws the figure on the plot.

5. getPopupMessage(double x, double y, DrawContext ctx) — Gets a popup message to display
when the user hovers above the figure. The (x,y) parameters are the coordinates of the mouse
on the chart.

6. setPopMessage(String msg) — Sets the message to display when the mouse is hovering over the
figure. If this method is called there is no need to override the getPopupMessage(...) method
above.

7. get/setBounds() — Use these methods to define the bounding rectangle for the figure. By default
the contains(...) method will use this to test if the figure contains the given (x,y) parameters.

5.2 Box

Use this class to draw a rectangular box with an optional fill color.

5.3 ColorRange Class

This class is convenient for creating ‘Heat Map’ studies. A good example of this is the Swami Stochastics
study. Each ColorRange object is essentially a bar that has a series of colors regions defined for a range
of values. The following screen shot illustrates what this looks like:

Figure 36 - Color Range Example

iMSFT -15 min
!i 6450
b
|" 64.30
| "
| \L ' HTuTnuu'H"I ﬂhpﬂ;+l+u‘+‘““ B
o | I 64.00
N |
i Ii“" "!"!Hﬁ " e Al .*' |
i ‘ | 'I ll'h .“T*”!TL' ull 'hi‘lm‘iq | l . ‘”“.* darof _:5350
|) | “ ‘ “ i ff qu ! i TIl ' This is an example of the
: ' I ' IHY ‘ '" . ! use of a ColorRange Figure .
: 'l' ' 'Lmhﬂ to create a 'Heat Map' —:83 0
I I 103
MotiueWave '
13!00 Felll-Dz 13![]0 FelIJ-D3 13!00 FetIJ-DB 13!00 FE![IJ-[:IF'r 13:[]0 FetIJ-DS 13!00 FetIJ-DQ 13![]0 FelIJ-1U 13:[]0 16![]0
*x H40.00
T 30.00
'* T 20.00

Version 1.3 ©2019 MotiveWave™ Software Page 46 of 85

MotiveWave ™

SDK Programming Guide “ nOtlve aveﬂ*

5.4 Line Class

The Line class is useful for drawing trend lines or vertical/horizontal lines. There are several convenience
options in this class for extending the line, setting the color and line style. You can even have the line
draw a different color above and below a given value.

5.5 Polygon

Draws a shape with 3 or more points.

5.6 ResizePoint

This is a special type of figure that enables users to interact with a study using the mouse. Users can
drag a resize point to a specific location. The study will receive the following resize events:

1. onBeginResize(ResizePoint rp, DrawContext ctx) — This is called when the user begins a drag
operation on the resize point

2. onResize(ResizePoint rp, DrawContext ctx) — This is called as the user drags the resize point. It
gives the study an opportunity to provide visual feedback as the user moves the mouse.

3. onEndResize(ResizePoint rp, DrawContext ctx) — This is called when the drag operation is
completed. Override this method to store changes in the settings. The study will be recalculated
after this method is called.

The follow excerpt from the TrendLine example study (see Study Examples project) shows an example of
using the onResize() and onEndResize() methods:

Version 1.3 ©2019 MotiveWave™ Software Page 47 of 85

MotiveWave™

SDK Programming Guide antive ave

package study examples;
import java.awt.Graphics2D;[]

/** This study draws a trend line on the price graph and allows the user to move it using the resize points.
The purpose of this example is to demonstrate advanced features such as using resize points and context menus. */
@StudyHeader(
namespace="com.motivewave"”,
1d="TREND_LIME",
name="Trend Line",
desc="This is an example study that draws a simple trend line and allows the user to resize it",
overlay=true)
public class TrendlLine extends com.motivewave.platform.sdk.study.Study
{
final static String START="start"”, END="end";
final static String EXT_RIGHT="extRight", EXT_LEFT="extleft";

@0verride
public void initialize(Defaults defaultis)

{
¥

// This method is called when the user is moving a resize point but has not released the mouse button yet.
// This does not cause the study to be recalculated until the resize operation is completed.
@0verride
public veoid onResize(ResizePoint rp, DrawContext ctx)
{
// In our case we want to adjust the trend line as the user moves the resize point
// This will provide visual feedback to the user

} trendLine. layout(ctx); Shows the trend line moving
with the resize point

// This method is called when the user has completed moving a resize point with the mouse.
// The underlying study framework will recalculate the study after this method is called.
@0verride

public void onEndResize(ResizePoint rp, DrawContext ctx)

{ N Operation completed.
// Commit the resize to the study settings, so it can be used in calculateValues() (see below

// We will store this in the settings as a string: "<price>|<time in millis>"
getSettings().setString(rp == startResize ? START : END, rp.getValue() + "|" + rp.getTime());

}

)] save the new position
in the settings.

5.6.1 Resize Types

There are 3 types of resize points supported to constrain how they can be adjusted by the user. These
types are defined in the enumeration ResizeType (found in the Enums interface):

1. Horizontal — This type of resize point can only be moved left or right. Its vertical position will
remain constant. By default, these resize points will be colored yellow.

2. Vertical — Only up and down movement is allowed. Its horizontal (x) position will remain
constant . By default, these resize points will be colored yellow.

3. All—Unrestricted. The user can move these types of points anywhere on the screen. By default
these types of resize points will be colored green.

The screen shot below shows an example of using resize points that have a type of ‘All’. This is from the
example TrendLine study:

Figure 37 Resize Points of Type ‘All’

Version 1.3 ©2019 MotiveWave™ Software Page 48 of 85

MotiveWave™
SDK Programming Guide

motivewlave

BTC/USD -1 ddy + | H20000.00
Trend Line ' T '
' ! i 117500 00
- |
t 1
| J15000.00
|
I
Cursor shol\;vs i 7 % ?"gqg%n
Resize Al I]
i /T 10258.14)
n* 1
' 1
atene? : -
ﬁ***l-h- |. u H Green Resize points allow the H7500.00
- P i*"" \ user to position them
L apen Tt ')
e T | wherever they like. J5000.00
. .‘.-o.,.-'v"'!---" !
|+1- { FEL !
_ | J2500.00
Motive\Wave I
1

L
Oct-2017 Oct-11

I
Nov-2017 Nov-11

1
Dec-2017 Dec-11

1
Jan-2018 Jan-11

L
Feb-2018 Feb-11

The screen shot below illustrates the use of a ‘Horizontal’ resize point to position the cycles in the Hurst
Cycles study:

Figure 38 Horizontal Resize Points

i TC/USD - 1 day +H400.00
Hurst Cycles
H350.00
5300.00
5250.00
221“33 3"%.]
166.12
Cursor shows 150 00
Horizontal Resize
5100.00
-++ e, o Horizontal Resize
il Phby Points are displayed | . FrCT—. y
1% as Yellow. E L d ——— 35.10]-{50.00
WotiveWave | L) ! & | —o0— —o— o—|17.80
I I I 1 1 I 1
Sep-11 Oct-2017 Oct-11 MNov-2017 Nov-11 Dec-2017 Dec-11 Jan-2018 Jan-11 Feb-2018 Feb-11
OFA®(8,3) 1min 5min 10min 15min 20min 30min 45min 1hour 2hour 6hour 1day 1week >3 EvE~ = @y @ v~ B

5.6.2 Absolute Positioning

The location of a resize point can be relative or absolute. If a resize point is absolute (see ‘absolute’
property on the ResizePoint class) then its position is defined by a specific time and value (usually price).
If relative positioning is used then the resize point is specified using the (x,y) screen coordinates on the
chart.

5.7 SinglePointFigure

A SinglePointFigure is a special type of Figure that defines figures that are located on the chart by a
single point (coordinate). For convenience, multiple figures that are located at the same coordinate may
be may be “stacked” above or below each other to improve readability.

This class currently has two subclasses:

1. Marker
2. Label

Version 1.3 ©2019 MotiveWave™ Software Page 49 of 85

MotiveWave™ (ﬂOtlve aveﬂﬂ\

SDK Programming Guide

5.7.1 Marker Class

The Marker class makes it convenient to highlight points of interest on the plot. Often this class is used
in conjunction with signals. There are several different types of markers (triangle, arrow, circle etc).
These types are defined in the enumeration MarkerType (found in the Enums interface).

5.7.2 Label Class

This class makes it easy to draw text labels at specific points on the study.

Version 1.3 ©2019 MotiveWave™ Software Page 50 of 85

MotiveWave™

SDK Programming Guide ‘nOtive ave

6 Signals

All studies and strategies may generate signals. Signals are events that occur at points of interest in a
study. Often signals are used as indicators of buy or sell points.

The end user may configure the study to create alerts from the signals generated by the study. To
provide a high level of flexibility, the user may choose which signals they want alerts for and how the
alerts behave.

The Sample Moving Average Cross (see sample project) is one example of a study that generates signals.
This study generates two signals:

1. Fast MA Crossed Above — This occurs when the Fast MA (shorter period) crosses above the Slow
MA
2. Fast MA Crossed Below — This occurs when the Fast MA crosses below the Slow MA

By default, these signals do not do anything other than show an up or down marker where the crosses
occur on the plot. The user can configure alerts for these signals from the ‘Signals’ tab of the Study
Dialog.

Figure 39 - Signals Tab

x
=il Signals Tab. this tab is show if
Displays a signal arrow when two moving avera the study generates signals

General Display Options 1 (signals=true in the Study Header)

Signal: | Fast MA Cross Above = All

Enabled: Fast MA Cross Above

Available Signals-‘

Fast MA Cross Below
All Bar Sizes: I

Show Alert: | Yes = ﬁ&?hnws the alert history window |

Play Sound: | Yes ~ V| Use Preset Sound Preset of custom
Sound File: sounds can be played
Send Email: | No v

Email Address:

Create Save Defaults Cancel

The following steps are required to generate signals for a study:

1. signal tag — set the ‘signal’ property in the StudyHeader to true
2. declare signals — There are two signals, cross above and cross below.
3. call ‘signal’ method — this generates the signals.

Version 1.3 ©2019 MotiveWave™ Software Page 51 of 85

MotiveWave™

SDK Programming Guide mOtiVeA’ave®

Figure 40 - signal tag (StudyHeader)
package study examples;

/** Moving Average (Cross. This study consists of two moving averages:
Fast MA (shorter period), Slow MA. Signals are generated when the
Fast MA moves above or below the Slow MA. Markers are also displayed
where these crosses occur. */
gStudyHeader(
namespace="com.mycompany" ,
id="MACROS5",
name="5%ample Moving Average (Cross"”,
label="MA Cross",
desc="Displays a signal arrow when two moving averages (fast and slow) cros
menu="Examples",]
overlay=true, A signals property
o . _ must be set to true
signals=true)
public class SampleMACross extends Study

{

enum Values { FAST MA, SLOW MA };
enum Signals { CROSS ABOVE, CROSS BELOW };

@verride
public woid initialize(Defaults defaults)
{
/f User Settings
SettingsDescriptor sd=new SettingsDescriptor();
setSettingsDescriptor(sd);
// Buntime Settings
RuntimeDescriptor desc=new RuntimeDescriptor();

setRuntimeDescriptor(desc); Decl h
! eclare eac

[/ Signals type of signal.

desc.declareSignal(Signals.CROSS ABOVE, "Fast MA Cross Above™);
desc.declareSignal(Signals.CROSS BELOW, "Fast MA Cross Below");

desc.setRangeKeys(Values. FAST MA, Values.S5L0W MA);

Version 1.3 ©2019 MotiveWave™ Software Page 52 of 85

MotiveWave™

SDK Programming Guide motive —‘jave@\

Figure 41 - Generating Signals

@override
protected void calculate(int index, DataContext ctx)
{
int fastPeriod=getSettings().getInteger(Inputs.PERIOD);
int slowPeriod=getSettings().getInteger({Inputs.PERIOD2);
if (index < Math.max(fastPeriod, slowPeriod)) return; // not enough data

DataSeries series=ctx.getDataSeries();

J/ Calculate and store the fast and slow MAs
Double fastMi=series.ma{getSettings().getMAMethod(Inputs. METHOD), index, fastPeriod, getSett
Double slowMA=series.ma(getSettings().getMAMethod(Inputs. METHOD2), index, slowPeriod, getSet
if (fastMA == null || slowMA == null) return;

series.setDouble(index, Values.FAST M4, fastMA);
series.setDouble{index, Values.S5LO0W M4, slowMA);

dl crossedAbove(._) and crossedBelow(..)
are convenience methods for determining

[/ Check to see if a cross oc iftwo paths have crossed

Coordinate c=new Coordi .getStartTime(index), slowMA);

if (crossedAbovetlsSeries, index, Values.FAST MA, Values.SLOW MA)) {
MarkerInfo marker=getSettings().getMarker(Inputs.UP MARKER);

e if (marker.isEnabled()) addFigure(new Marker(c, Enums.Position.BOTTOM, marker));
ctx.signal(index, Signals.CR0OS55 ABOVE, "Fast MA Crossed Above!", series.getClose(index));

if (!series.isBarComplete(in

h Generate signals. Mote: these |

else if (crossedBelOy are only triggered when the FAST_MA, Values.SLOW MAY) {
MarkerInfo mar =g last bar is completed Inputs.DOWN MARKER) ;
if (marker.#SEnablewyyy o= r{c, Enums.Position.TOP, marker));

q ctx.signal(index, Signals.CROSS BELOW, "Fast MA Crossed Below!™, series.getClose(index));

series.setComplete(index);

¥

Version 1.3 ©2019 MotiveWave™ Software Page 53 of 85

MotiveWave™

SDK Programming Guide motive_"ave@

7 Tick Data

Version 5 of MotiveWave™ includes support for handling live and historical tick data (if supported by the
broker and/or data service). Live and historical ticks are described using the Tick interface (see below).
The time of the tick can be accessed via the getTime() method. This returns the number of milliseconds
since January 1, 1970 (epoch time).

Figure 42 Tick Interface
package com.motivewave.platform.sdk.common;

/** Represents a tick (trade) that occurred. */
public interface Tick
{
J*¥* Gets the trade price for the tick.
@return trade price for the tick®*/
float getPrice();
J** Gets the number of units traded.
@return number of units traded */
int getVolume();
/** Gets the ask(offer) price when this tick occurred.
@return ask price when the tick occurred. */
float getAskPrice();
J** Gets the ask size (number of units offered) when this tick occurred.
@return ask size when the tick occurred. */
int getAskSize();
J¥* Gets the bid price when this tick occurred.
@return bid price when the tick occurred. */
float getBidPrice();
/** Gets the ask size (number of units bid) when this tick occurred.
@return bid size when the tick occurred. */
int getBidSize();
/** Gets the time when this tick occurred (in milliseconds since 1978).
@return the time when this tick occurred (in milliseconds since 1978). */
long getTime();
J** Indicates if this trade occurred at the ask price (bid price if false).
@return true if this trade occurred at the ask price */
boolean isAskTick();

}

Historical ticks can be requested at any time from the Instrument interface using the getTicks(startTime,
endTime) method. This will return a list of ticks that occurred on the instrument between the start and
end times.

Version 1.3 ©2019 MotiveWave™ Software Page 54 of 85

MotiveWave™

SDK Programming Guide antive ave

Figure 43 Instrument getTicks()
package com.motivewave.platform.sdk.common;

import java.util.list;

/** Represents an Instrument. */
public interface Instrument

1
e T e I e EEE M L e

T A T e T T o T e A T e
/¥ Gets the ticks that occurred between the given startTime and endTime

@param startTime - start time (in milliseconds since 197@)

@param endTime - end time (in milliseconds since 1978)

@return list of ticks that occurred in the given time */
List«Tick> getTicks(long startTime, long endTime);

¥

|

Live ticks can be processed through the onTick(dataContext, tick) method in the Study class. This
method will be called every time a new tick is generated on the instrument.

Figure 44 Study onTick Method
package com.motivewave.platform.sdk.study;

import java.beans.PropertyChangelistener;[]

/*% This is the base class for all studies and strategies. */
public class 5tudy implements Cloneable

i.. —gly . -~ A —__N N

J*= This method is called when a tick (trade) occurs.
@param tick latest tick (trade) */

public wvoid onTick(DataContext ctx, Tick tick)

{ I

¥
T e I T R

T e T i AN e T
EmadJ____“——H»maf“

Version 1.3 ©2019 MotiveWave™ Software Page 55 of 85

MotiveWave™

SDK Programming Guide mOtiVe_‘Jave®

8 Strategies

Strategies allow you to automate (or partially automate) the buying and selling of instruments. The
strategy APIs build upon the study classes and interfaces described in the preceding sections.

8.1 StudyHeader

Let’s start buy looking at what is needed in the StudyHeader to declare a strategy:
Figure 45 - Study Header - Strategy Options

/¥ @return true if this study is a stratece =l
boolean strategy() default false; Must be set to true’ in order
tegy tag must be t

/** @return true if this strategy suppo for it to be a strategy
boolean autoEntry() default true;
J** f@return true if this strategy sup Automatic vs Manual fegy tag must be true
boolean manualEntry() default false; Strategies

/** @return true if this strategy supports The display of the entry price (strateg
boolean supportsEntryPrice() default true; -L

/** @return true if this strategy supports the display of the
boolean supportsPosition() default true;
/** @return true if this strategy supports the display of the current profit/loss
boolean supportsCurrentPL() default false;
J** @return true if this strategy supports the disp
boolean supportsTotalPL() default false;
J** @return true if this strategy supports th[dis

position price (stra

rofit/loss (s

Information displayed

in contral box tio (strategy

boolean supportsRiskRatio() default false;
J*¥* f@return true if this strategy supports th
boolean supportsStopPL() default false;

/** @return true if this strategy supports tTE display of the target profit/loss (
boolean supportsTargetPL({) default false;
/** @return true if this strategy supports the display of the realized profit/loss
boolean supportsRealizedPL() default false;
J/** @return true if this strategy supports the display of the unrealized profit/lo
boolean supportsUnrealizedPL() default false,
J** Indicates if the Trade Options panel shauld be shown.[]
boolean showTradeOptions() default true;
J** Indicates if the strategy supports the "tradgq lots® feature. []
boolean supportsTradelots() default true;

/** Indicates if the strategy supports the 'pusit%igzﬁ Supported Trading
on

display of the stop profit/loss (st

boolean supportsPositionType() default false; Options
/** Indicates if the strategy supports the 'entern E
boolean supportsEnterOnlActivate() default true;

J*¥* Indicates if the strategy supports the "closdq on deactivate® feature. []
default true;

The most important property to have set is “strategy=true”. The “autoEntry” and “manualEntry”
properties may be used to indicate that the strategy is automatic or manual (Note: Trade Manager is an
example of a manual entry strategy).

Version 1.3 ©2019 MotiveWave™ Software Page 56 of 85

MotiveWave™

SDK Programming Guide ‘nOtive ave

8.2 Study Class

There are a number of other methods available on the Study class that may be used for strategies. The
following excerpt from the Study class illustrates the strategy event methods:

Figure 46 - Strategy Events

S/ Strategy Methods

/** This method is called when the strategy is activated. */
public void onActivate(OrderContext ctx) [

/** This method is called when the current bar is first opened.[]
public veoid onBarOpen(OrderContext ctx) []

J* % This method is called when the current bar has been updated. */
public void onBarUpdate(OrderContext ctx) [

/** This method is called when the current bar has been closed.[]
public veoid onBar(Close(OrderContext ctx) []

/** This method is called when a signal is generated by the study.
public wvoid onSignal(OrderContext ctx, Object signalKey)[]

J¥* This method is called when the strategy is deactivated. */
public veoid onDeactivate(OrderContext ctx) []

J** This method is called when the strategy is reset. */

public void onReset(OrderContext ctx) []

J** This method is called when the current open position is closed.
public veoid onPositionClosed(OrderContext ctx) {1

/** This method is called on response to the 'H Manual Entry [ton on
public void onEnterNow(OrderContext ctx) {} Method Only

e onActivate(OrderContext ctx) — This method is called when the user presses the ‘Activate’
button in the Control Box. If the user has chosen the ‘Enter on Activate’ option this method
should create an entry order for the appropriate direction.

e onBarOpen(OrderContext ctx) — This method is called when the price bar is first opened. Note:
live bar updates must be enabled for this method to be called.

e onBarUpdate(OrderContext ctx) — This method is called when the current price bar is updated.
Note: live bar updates must be enabled for this method to be called.

e onBarClose(OrderContext ctx) — This method is called when the current price bar is closed (just
before the next price bar is opened).

e onSignal(OrderContext ctx, Object signal) — This method is called when a signal is raised by a
study. This is a convenient method to override if your strategy is based on signals from an
existing study (see Sample MA Cross Strategy).

e onDeactivate(OrderContext ctx) — Called when the user presses the ‘Deactivate’ button. By
default this method will close the open position (if enabled by the user).

e onReset(OrderContext ctx) — This is called when the user presses the ‘reset’ button on the
control box.

e onPositionClosed(OrderContext ctx) — Called when an open position is closed.

Version 1.3 ©2019 MotiveWave™ Software Page 57 of 85

MotiveWave™

SDK Programming Guide monve -‘jave@

e onEnterNow(OrderContext ctx) — Called when the user presses the ‘Enter Now’ button on the
Control Box. Note: this is only applicable for manual strategies.

In addition to the events described above, there are also a set of methods for handling orders and a set
of properties available to strategies. For a full list of available methods, please consult the API
documentation.

Figure 47 - Order Events and Properties
Ly

// Order Ewvents

/!

J** This method is called when an order is filled. */
public veid onOrderFilled(OrderContext ctx, Order order) {}
J* % This method is called when an order is cancelled. */
public wvoid onOrderCancelled(Orderlontext ctx, Order order
J** This method is called when an order is rejected. */
public void onOrderRejected(OrderContext ctx, Order order)
J** This method is called when an order is cancelled. */
public void onOrderModified(OrderContext ctx, Order order) {}

/!

J/ Strategy Properties

I

/** Gets the current state of this strategy. */

public final Enums.StrategyState getState() {...}

J*¥* S5ets the current state of this strategy. */

public final veoid setState(Enums.StrategyState state) [

/** Gets the current entry state of this strategy. */

public final Enums.EntryState getEntryState() {...} e
J*¥* S5ets the current state of this strategy. */ i Properties
public final veoid setEntryState(Enums.EntryState state) [
/** Gets the current stop price for an active strategy.
This may be used to calculate the stop profit/loss (null if there is no s
public final Float getStopPrice() {...}

/** 5ets the stop price for the active strategy. Use null to indicate t
public final void setStopPrice(Float price) []

/** Gets the current target price (exit price) for an active strategy.
This may be used to calculate the target profit/loss (null if there is n
public final Float getTargetPrice() { ...}

/** Sets the target price for the active strategy. Use null to indicate
public final veoid setTargetPrice(Float price) []

L

"

Crder handling
events

8.3 OrderContext Interface

The OrderContext interface is passed to most of the strategy events and provides functionality for
managing orders and positions. This interface also manages the current position state for the strategy
and provides methods for getting the unrealized profit/loss, average entry price etc. A number of
convenience methods also exist such as:

Version 1.3 ©2019 MotiveWave™ Software Page 58 of 85

MotiveWave™

SDK Programming Guide mOtiVe_‘Jave®

e buy(int qty) — places a market order to buy the given quantity and waits for the order to be filled.
e sell(int qty) — places a market order to sell the given quantity and waits for the order to be filled.
e closeAtMarket() — closes the current position at market price.

Figure 48 - OrderContext Interface

package com.motivewave.platform.sdk.order mgmt;
/** This interface provides the capability to create and manage orders. *

public interface OrderContext

1

/** Gets the data context assoclated with this strategy. This prowvides
DataContext getDataContext();

/** Gets the instrument associated with the data provided in this conte
Instrument getInstrument();

J** Convenience Method: Places a BUY order for the current instrument at
void buy(int gqty);

J** Convenlence Method: Places a SELL order for the current instrument
void sell(int gty);

/** (Closes the position held by this strategy. This method will wait un
void closeAtMarket();

/¥ Gets all of the active orders that are associated with this strateg
List<Order> getlActiveOrders();

J¥* Gets the current open position. A negative number is returned if th
int getPosition();

/** Gets the average entry price for the current position. */

float getAvgEntryPrice();

/** Gets the total realized pnl since this strategy was opened (or last
double getTotalRealizedPnlL();

/** Gets the realized PnlL for the current 'leg' of the strategy. */
double getRealizedPnL();

J¥* Gets the PnL for the open position. This value will change with ewv
double getUnrealizedPnl();

/** Convenience Method. Calculates the current profit/loss from the giw
double calcPnl(fleoat entryPrice, int gty);

J¥* Convenience Method. Calculates the profit/loss from the given entr
double calcPnl(fleat entryPrice, fleoat exitPrice, int gty);

/** Converts the given amount to the amount in the base currency using
double convertToBaseCurrency(double pnl);

The following methods may be used to manually create and manage stop, limit and market orders:

Version 1.3 ©2019 MotiveWave™ Software Page 59 of 85

MotiveWave ™ . "
SDK Programming Guide mOtlve ave

Figure 49 - OrderContext Order Mgmt Methods

J** Creates a new 'Market’ order. */
Order createMarketOrder(Enums.0OrderAction action, int qty);
J** Creates a new 'Market’ order. */

Order createMarketOrder(Instrument instr, Enums.OrderAction action, int qty);
J** Creates a new "Limit' order. */
Order createlimitOrder(Enums.0OrderAction action, Enums.TIF tif, int qty, fleat limitPrice);
J** Creates a new "Limit' order. */
Order createlimitOrder(Instrument instr, Enums.OrderAction action, Enums.TIF tif, int gqty, f
/** Creates a new 'Stop' order. */
Order createStopOrder(Enums.OrderAction action, Enums.TIF tif, int gty, fleoat stopPrice);
/** Creates a new 'Stop' order. */
Order createStopOrder(Instrument instr, Enums.OrderAction action, Enums.TIF tif, int qty, fl
J** Use this method to submit one or more orders to the broker.
If one or more of the orders are new, the orders will be created otherwise the
existing order will be modified. Please note: this is a synchronous call and
may take a significant amount of time to return.*/
void submitOrders(Order... orders);
J** UUse this method to submit one or more orders to the broker.
If one or more of the orders are new, the orders will be created otherwise the
existing order will be modified. Please note: this is a synchronous call and
may take a significant amount of time to return.*/
void submitOrders(List<0Order> orders);
/** Use this method to cancel one or more existing orders. Please note: this is a synchronou
may take a significant amount of time to return. */
void cancelOrders(Order... orders);
/** Use this method to cancel one or more existing orders. Please note: this is a synchronou
may take a significant amount of time to return. */
void cancelOrders(List<0Order> orders);
/** Cancels all of the open orders for this strategy. */
void cancelOrders();

W i, i Vo -, L
il P —— . % —— -

8.4 Order Interface

Strategies that simply buy and sell positions using the buy/sell methods will not have to deal with orders
directly.

Market Orders vs Stop/Limit Orders

It can be very tempting to use stop and/or limit orders in place of market orders when
implementing a strategy since these types of orders are already placed at the exchange and they
can help guarantee execution at a particular price.

There are however several behaviors to be aware of when using these types of orders especially
with fully automated strategies:

e Limit Orders are not guaranteed to be executed. Even if the price action has traded
through your limit price, it may not have been executed in a live environment if there was
not enough demand to fill your order at the specified price.

e Stop Orders are often triggered on Bid/Ask. It's a common misconception that stop
orders are triggered by last price. Most (if not all) brokers trigger stop orders using the
bid or ask price (depending on whether it’s a buy or sell). This can cause your stop order

Version 1.3 ©2019 MotiveWave™ Software Page 60 of 85

MotiveWave™

SDK Programming Guide monve -‘jave@

to be executed unexpectedly early especially if there is a significant spread in the bid/ask
prices.

e Stop Orders are filled at market. Once a stop order is triggered, it is filled at market price.
Stop Limit orders do exist, but are not currently supported by this API. Also note that not
all brokers support Stop Limit orders.

If you choose to implement a fully automated strategy using non-market orders, you will need to
consider these behaviors and add the appropriate code to handle cases where your orders do not
get filled, or do not get filled at your expected price.

Ultimately, the choice you make will be a trade-off between order executions vs. fill price.

The following diagram illustrates some of the methods available in the Order interface. For a full list of
methods, consult the APl documentation.

Figure 50 - Order Interface

package com.motivewave.platform.sdk.order _mgmt;

J/** Represents an order to buy or sell an instrument. */
public interface Order

{

J¥* Gets the account ID for this order. @return account ID for this
String getAccountId();

/** @return the unigque identifier for this order. MNote: on some brok
String getOrderId();

J¥* @return the instrument of this order. */

Instrument getInstrument();

/** f@return the type of this order (Stop, Limit etc) */
Enums.OrderType getType();

/** Gets the action of this order (Buy or Sell) */
Enums .OrderAction getfction();

/** Gets the limit price for the order (null if not a limit order).
Float getlimitPrice();

/** Gets the stop price for the order (null if not a stop order). */
Float getStopPrice();

J*® Gets the Time In Force for this order. */

Enums.TIF getTIF();

/** @return the size of this order (ie number of shares, contracts e
int getQuantity();

/** Gets the average fill price for this order.

* @return the average fill price for this order. */

float getAvgFillPrice();

J¥* @return the last price that this order was filled at. */
float getlastFillPrice();

/** @return the number of shares/contracts etc that have been filled
int getFilled();

/** Gets the time (in millis) of the last fill on this order. */
long getlastFillTime();

Version 1.3 ©2019 MotiveWave™ Software Page 61 of 85

MotiveWave™

SDK Programming Guide motive_"ave@

8.5 Trading Sessions
Version 1.1 of the SDK introduces the ability for the user to define trading sessions for a strategy.

A ‘trading session’ is simply a valid time period during the day in which trading is allowed for the
strategy. By default, all strategies support up to 2 trading sessions. This behavior can be modified in the
StudyHeader:

Figure 51 StudyHeader trading session options
package com.motivewave.platform.sdk.study;

@Retention({RetentionPolicy.RUNTIME)
@Target{ElementType. TYPE)
public @interface StudyHeader
{
/** Namespace for this study (Must be unique for your organization) */
String namespace();
/** @return true if this study should be protected by namespace. */
boolean secured() default false;
/** Unique (within the namespace) ID for this study. */
String id();
/** Resource bundle to pull translatable strings from. */
String rb() default "";

/** @return true if this study is a strategy. */
boolean strategy() default false;

/** Indicates if the strategy supports sessions.
* @return true if this strategy supports
boolean supportsSessions() default true;
J** Indicates if the number of sessions su
* @return number of supported sessions. */
int sessions() default 2;

/*% Indicates if the strategy supports the ‘enter on 9 jlows the userto choose ef
* @return true if this strategy supports the “enter ¢ to automatically enter when ;
boolean supportsEnterOnSessionStart() default false;£y a session starts

J¥* Indicates if the strategy supports the 'exit on se=5I0M CIOSE TEgLUre.
* @return true if this strategy supports the "exit
boolean supportsCloseOnSessionEnd() default true;

set to false to disable
trading sessions

ategy (default 2).

allows the userto choose to
automatically close an open
position when a session ends

The following screen shot illustrates an example of the MA Cross Strategy with the default settings for
Trading Sessions.

Version 1.3 ©2019 MotiveWave™ Software Page 62 of 85

MotiveWave™

SDK Programming Guide motive_"ave@

Figure 52 Trading Session example: MA Cross Strategy
MA Cross Strategy X

The strategy is based off the Moving Average Cross study. Trades occur when the fast moving average crosses
the slow moving average.

General Display WEEGOUESGIER<S"_ accessible from the I
Trading Options panel J
Trading Options

Trade Lots: 1%

Position Type: | Both -

Use Account Position v'| Close On Deactivate Underla] User may choose to
enable one or more
Enter On Activate Bar Updates trading sessions

Trading Sessions

W

Session 1: Start: 10:00 AM |® End: [12200PM @ Enabled
Session 2: Start: @©| End: 0] Enabled
Time Zone: + v/ Use Default

vf Close On Session End CIUSE any open position
when a session ends

Create Save Defaults Help Cancel

8.5.1 Runtime Support

The following additional methods have been added to the Settings class to access information chosen by
the user at runtime within the strategy:

package com.motivewave.platform.sdk.common;

public class 5ettings implements Cloneable

{

L
/** Gets the trading sessions (strategies only). */
public List<TimeFrame> getSessions()

/** @return true if this strategy should enter automatically when a trading
public boolean isEnterOnSessionStart()

J** @return true if this strategy should exit an open position automatically
public boolean isCloseOnSessionEnd()

/** Gets the timezone for sessions (null for local time zone). */

public TimeZone getTimeZone()

Version 1.3 ©2019 MotiveWave™ Software Page 63 of 85

MotiveWave™

SDK Programming Guide ‘nOtive ave

The following methods are also available on the Study class that may be optionally overridden. Note: if
‘enter on session start’ is enabled the strategy must override and implement the onSessionStarty...)
method to implement the entry logic.

package com.motivewave.platform.sdk.study;

public class 5tudy implements Cloneable

1

J** This method is called when a trading session is started. */
public void onSessionStarted(OrderContext ctx, TimeFrame session)

/** This method is called when a trading session is ended. */

&

public void onSessionEnded{OrderContext ctx, TimeFrame session)

8.6 Sample MA Cross Strategy

The following example illustrates a simple strategy based on the SampleMACross study (see sample
project and signals in Section 6). This strategy will buy when the fast moving average crosses above the
slow moving average and sell when it crosses below.

For convenience, this strategy will subclass the SampleMACross study and rely on the signals generated
for ‘Fast MA Crossed Above’ (Signals.CROSS_ABOVE) and ‘Fast MA Crossed Below’
(Signals.CROSS_BELOW).

Let’s take a look at the StudyHeader. The key properties to note here are: strategy=true and
autoEntry=true (1 below).

Version 1.3 ©2019 MotiveWave™ Software Page 64 of 85

MotiveWave™

SDK Programming Guide ‘nOtive ave

Figure 53 - Sample MA Cross Strategy Header
package study examples;

/** Moving Average (Cross S5trategy. This is based of the SampleMACross study
@StudyHeader(
namespace="com.mycompany",
id="MACROSS_STRATEGY",
name="5%ample MA Cross Strategy”,
desc="Buys when the fast MA crosses above the slow MA and sells when it cr
menu="Examples",

overlay = true, strategy property 1

signals = true, must be set to true

05trateg}r = true,
autoEntry = true,—%thig is an automated strategyj

manualEntry = false,
supportsUnrealizedPL = true, =
supportsRealizedPL = true, —_—

These properties
determine what labels are
visible in the Control Box

supportsTotalPL = true) -—’“"ﬂﬂ, Extending
public class SampleMACrossStrategy extends SampleMACross Sa?pmhmACmms
{ study

@lverride

For this strategy, we are going to override two methods:

e onActivate(OrderContext ctx) — If the user chooses to open a position on activate (see Trading
Options panel), we will open a long or short position depending on whether the fast MA is above
or below the slow MA (see 2 below)

e onSignal(OrderContext ctx, Object signal) — In this method, we will use the signals generated in
the SampleMACross class under the keys: Signals.CROSS_ABOVE and Signals.CROSS_BELOW (see
calculate method). Note: we are reversing a position if it is open. IE: a long position becomes a
short position and vice versa. (3 & 4 below)

Version 1.3 ©2019 MotiveWave™ Software Page 65 of 85

MotiveWave™

SDK Programming Guide ‘nOtive ave

@iverride
public void onActivate(OrderContext ctx)
{
if (getSettings().isEnterOnlActivate()) {
DataSeries series = ctx.getDataContext().getDataSeries();
int ind = series.islastBarComplete() ? series.size()-1 : series.size()-2;
Double fastMA = series.getDouble(ind, Values.FAST MA);
Double slowMA = series.getDouble(ind, Values.SLOW MA);
if (fastMA == null || slowMA == null) return;
int tradelots = getSettings().getTradelots();
int gty = tradelots *= ctx.getInstrument().getDefaultQuantity();
/! Create a long or short position if we are above or below the signal line
e if (fastMA > slowMA) ctx.buy(qty); Open the initial position

else ctx.sell(qty); (if the user chose Enter
T On Activate’)

)

@lverride
public void onSignal(0OrderContext ctx, Object signal)
{
Instrument instr = ctx.getInstrument();
int position = ctx.getPosition();
int gty = (getSettings().getTradelots() * instr.getDefaultQuantity());

gty += Math.abs(position); // Stop and Reverse if there is an open position
if (position <= @ B&& signal == Signals.CROSS5 ABOVE) {
ctx.buy(gqty); // Open Long Position

if (position »= 0 &8 signal == Signals.CROSS _BELOW) {
e ctx.sell(gty); // Open Short Position

¥
¥

N Y S

8.7 Strategy States
A strategy can be in one of three different states (defined in Enums.StrategyState):

1. Inactive — No trades are active and the strategy will not place any trades.
2. Active — The strategy may place trades to open or close positions
3. Dormant — In this state, the strategy is still active but does not place any new trades

The current state of the strategy can be queried/set from the following methods (on the Study Class):

1. getState() — returns the current state of the strategy
2. setState(Enums.StrategyState state) — Sets the new state for the strategy.

In most cases, the strategy state is initiated by the user by pressing the ‘Activate’ or ‘Deactivate’ button
from the Strategy Control Box. However, you can set the state from your strategy. This is most common
when switching the strategy to the ‘Dormant’ state. You may want to use this state to indicate that the

Version 1.3 ©2019 MotiveWave™ Software Page 66 of 85

MotiveWave™

SDK Programming Guide ‘nOtive ave

strategy is waiting for a specify condition to happen before placing trades again. This is often used when
you just want the strategy to be active during specific hours of the day.

The following diagram illustrates these states and the transitions between them:

Figure 54 - Strategy States

User Presses Initiated by
‘Activate’ Button Strategy

Inactive Active Dormant
User Presses Initiated by
‘Deactivate’ Button Strategy
or Initiated by
Strategy

8.8 Manual Strategies

MotiveWave™ allows you to create strategies that respond to user input to enter or exit a position. This
can be very useful as a way to help direct and manage exit points for user initiated trades. For an
example of how this works, see the Trade Manager strategy.

The following screen shots illustrate the Trade Manager strategy in action:

Figure 55 - Trade Manager

MSFT - 15 min | 6460
i User chooses i i i i —:54.40
i Long or Short i i !' ’ " | (6430
;] i ; i | L de4a20
i Trade k fanager (G X i i ' *+T“T¢1‘ l'ﬂ - TI“T* +H. -|-+“T .' i
| = 1 | | .
| = s e
! strate ! ! i
! Position: N i ' I ' i j
ri Entry Price: N/A iy 10 i ' | 6360
| - 10 i - s e of =
Unrealized PL: NA |y : (! I +J.-|-TH " T T is is an example of a o
Target PIL: N/A T h-l J. | H I | . manual strategy. The user b dg340
i| Stop PIL. A Ly Tlli * i chooses Long or Short and b
* P o ! : initiates the entry process. o
Reward/Risk: NIA i : I 6320
: Realized PIL: NIA Strategy Control Box : E E
; Total PL: N/A ; i o H63.00
WotiveWave E | : | |]

1200 1400 Feb07 1200 1400 Feb0& 1200 1400 Feb0d 1200 1400 Feb10 1200 1400 1600 1800

Version 1.3 ©2019 MotiveWave™ Software Page 67 of 85

MotiveWave™
SDK Programming Guide

Figure 56 - Trade Manager - Entering a Position

motivewlave

T
|
|
|
|
1
|
|
1
|
'

T
|
|
1
|
|
I

. .
. .
!

. .
. .
. .
. .
! !
. .
. .
! !
. .
s | | SRR 1
. .
.

.

!

.

.

i

.

.

']

|

.

!

MSFT - 15 min 5 N EYES
E Title Bar flashes to indicate E E E i
i | that the strategy is 'Active’ ; ; ; 1 r]64.40
i ; i b r e
| = | | Mg, 410 | dea0
| | Trademanager C' /X | | H'T"*T”m"'r!"l Ll +“*++iir.]
! ! ; | .- b {6400
| Cancel Enter Now <”f Calls ‘onEnterNow(...)' | | | b le3so
i A T method | I+* | o]
I i i 360
| Cancels all orders NIA J:' ‘“* “ i * : T? i i]
and deactivates the N/A ih i ”' I*H 1 i l+ T | i]
i strategy N/A T IJ..],_],J.T i I* 'i i b 63.40
** . N/A 1§ : : Pl
Reward/Risk: NIA | | | i 6320
: Realized P/L- N/A i i i .
| Total PL: N/A ; ! i i]63.00
WotiveWave | | | | o]
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1200 1400 Feb-07 1200 1400 Feb08 1200 1400 Feb-09 1200 1400 Feb-10 12:00 1400 1600 1800
Figure 57 - Trade Manager Open Position
MSFT - 15 min ' P
i 6440

-------------------- CERIEREC} 5
T K64.30]

e~ L\ -5k 00522 IR
i Entry Order i Trade Manager (G b4 H+i+“ LMT-SIM 100@64.22 —:64.20
1; _____ Executed ___1;__ : f____:.i“___._f 6410
; ——=:.___ Close Now i . . o ‘ ________________ L___]
| | | : e
| H Position: 300] | 1 b
R i1 Entry Price: 6402 [T [I — s STP-SIM 300@263.92 (2] S AN
i { | Unrealized PL: i i P
! i Target P/L: | ! Stop Order i He3.80
i Stop PIL: EXn * P
! l Reward/Risk: 200 i + i i U370
| il | Realizea PIL: N/A P
| l Total PL | % | - deaeo
WotiveWave . H i ‘.i [, . : , i [, , i , , : . i]
12:00 14:00 Feb07 1200 14:00 Feb08 12:00 14:00 Feb09 1200 14:00 Feb-10 1200 1400 16:00 18:00

8.8.1 Entry States

In order to manage the orders for manual strategies, entry states have been defined to indicate the
current stage the strategy is in. These states are defined in the Enums.EntryState enumeration.

1. None — No entry state, waiting for the user to initiate the entry process
2. Pre-Entry — The user has initiated the entry process and the strategy is preparing to create the

entry order(s).

3. Waiting Entry — Waiting for entry orders to be filled (this state can be skipped if using market

orders).

4. Open — Position is open, waiting for the position to be closed.

Version 1.3

©2019 MotiveWave™ Software

Page 68 of 85

MotiveWave™ .
SDK Programming Guide ’ ﬂOtlve ave
These states can be queried/set from the following methods in the Study Class:

1. getEntryState() — returns the current entry state for the strategy.
2. setEntryState(Enums.EntryState state) — sets the entry state for the strategy.

The following diagram illustrates these states and their transitions:

Figure 58 - Entry States

v v |
(Pre-Entry] (Waiting Entry]

Version 1.3 ©2019 MotiveWave™ Software Page 69 of 85

MotiveWave™
SDK Programming Guide

9 Logging

motivewlave

Often as part of debugging, you will want to write information to a log. MotiveWave™ includes a study
log utility. This can be accessed from the Console menu bar: View -> Display -> Study Log.

The following diagram illustrates what the Study Log looks like:

= Study Log X
The following table contains log entries created by active studies. Use the options below to filter the results.
Filter: Log Type: | All » Study: | All - =
A
Timeas Type Study Message \—'I:
------- e clears the log.
9:38:19 Debug Simple MACD(C Setting MACD value for index: 600 MACD: 0.06571313258635314
9:38:19 Debug Simple MACD(C Setting MACD value for index: 601 MACD: 0.07274750228825155
9:38:19 Debug Simple MACD(C Setting MACD value for index: 602 MACD: 0.08062129407363727
9:38:19 Debug Simple MACD(C Setting MACD value for index: 603 MACD: 0.07789376320826591
9:38:19 Debug Simple MACD(C Setting MACD value for index: 604 MACD: 0.08204954288410704
9:38:19 Debug Simple MACD(C Setting MACD value for index: 605 MACD: 0.0843704580958331
9:38:19 Debug Simple MACD(C Setting MACD value for index: 606 MACD: 0.08602463485439671
9:38:19 Debug Simple MACD({C Setting MACD value for index: 607 MACD: 0.0807556747149647
9:38:19 Debug Simple MACD(C Setting MACD value for index: 608 MACD: 0.06453923697318942
9:38:19 Debug Simple MACD(C Setting MACD value for index: 609 MACD: 0.04870549581309547
9:38:19 Debug Simple MACD(C Setting MACD value for index: 610 MACD: 0.038138159682119976
9:38:19 Debug Simple MACD{C Setting MACD value for index: 611 MACD: 0.022245089779914906
9:38:19 Debug Simple MACD(C Setting MACD value for index: 612 MACD: 0.011135531508330132
9:38:19 Debug Simple MACD{C Setting MACD value for index: 613 MACD: -0.0032800688587144577
9:38:19 Debug Simple MACD(C Setting MACD value for index: 614 MACD: 0.05566285676306393 []
Close

There are 4 methods available (from the base class Study) for creating log entries:

Version 1.3

©2019 MotiveWave™ Software

Page 70 of 85

MotiveWave™
SDK Programming Guide

Figure 59 - Study logging methods

{

package com.motivewave.platform.sdk.study;

[** This is the base class for all studies and strategies. */
public class Study

I
!/ Log methods
Iy

/** Logs a debug message to the study log. */
public wvoid debug(String msg)[]

/** Logs an info message to the study log. */
public veid info(5tring msg)[]

/** Logs a warning message to the study log. *=/
public void warning(String msg)[]

/** Llogs an error message to the study log. */
public veoid error(String msg)[]

motivelave’

Version 1.3 ©2019 MotiveWave™ Software

Page 71 of 85

MotiveWave™

SDK Programming Guide ‘nOtive ave

10 Internationalization

For simplicity, the examples provided so far in this guide have translatable text embedded in the code
directly. Although MotiveWave™ does not currently support multiple languages (at least as of writing
this guide), it is inevitable that this will happen at some point in the near future.

All of the studies available in MotiveWave™ have the translatable text separated into a Resource Bundle.
Resource Bundles are a standard mechanism built into Java for internationalization. If you are
unfamiliar with this construct, there are many tutorials available on the internet. Here is a general
tutorial available on the Oracle™ website:
http://docs.oracle.com/javase/tutorial/i18n/resbundle/concept.html

Separating text in a study is very simple and only requires you to do the following:

1. Declare the Resource Bundle — In the Study Header, specify the package and name of the
resource bundle using the rb property

2. Usethe get(“LABEL_ID”, ...) to retrieve text. This method available from the Study class pulls
text from the resource bundle associated with the given ID. Values in the text can be replaced by
specifying these values after the label ID (named %1, %2, %3...)

10.1 Example: MACD

The following example shows the Study Header for the MACD study. In this case the rb property is
pointing to the resource bundle: com.motivewave.platform.study.nls.strings. This will resolve to the
strings.properties file (for English translation) in the com/motivewave/platform/study/nls directory.

Once the rb property is defined in the Study Header, MotiveWave™ will assume that the other

properties (that expect displayable text) are actually IDs that need to be resolved from the resource
bundle.

Figure 60 - Internationalization Study Header
package com.motivewave.platform.study.general;

import com.motivewave.platform.sdk.common.*;
import com.motivewave.platform.sdk.common.desc.®;
import com.motivewave.platform.sdk.draw.*;

import com.motivewave.platform.sdk.study.*®;

4
4
S**% Moving Average Convergence/Divergence (MACD) #*/)
@StudyHeader (
namespace="com. motivewave", strings.properties file in the package: {
id="MACDY, com.motivewave_platform_study nls
rb="com.motivewave.platform. study.nls.strings”™, 1"
name="TITLE MACD",
label="LBL MARCD", This values are pulled from)
desc="DESC_MRCD", the resource bundle:
menu="MENU_ GENERAL", strings.properties !
menuZ="MENU SIGHALS",
overlay=false, Ty

supportsS5ignals=truoe)
poblic class MACD extends com.motivewave.platform.sdk.study.S5tudy

'-{ s Iy, "‘Mxr »."’ & ﬂl‘r. _\h‘-‘. J H.\\.‘ ""l'.‘_. B J

Version 1.3 ©2019 MotiveWave™ Software Page 72 of 85

http://docs.oracle.com/javase/tutorial/i18n/resbundle/concept.html

MotiveWave™

SDK Programming Guide mOtive_"aVeﬁ

Figure 61 - Resolving text using the 'get' method

@Cverride
public wvoid initialize (Defaults defaults)
i

SettingsDescriptor =d = new SettingsDescriptor():

setSettingsDescriptor(sd); UEC_-* the ‘get’ method to
SettingTab tab = new SettingTab (get ("TAB GENERAL")): retrieve text ﬁl}"]
=d.addTab (tab) : strings.properties

SettingGroup inputs = new SettingGroup (get ("LEL_INPUTS")) :

inputs.addRow (new InputDescriptor (Inputs.INFUT, get ("LEL INPUT"), Enums.BarInput.ClLOSE)):

inputs.addRow (new MAMethodDescriptor (Inputs.METHOD, get ("LEL _METHOD"), Enums.MRMethod.EMA)):

inputs.addRow (new MRMethodDescriptor (Inputs.SIGNAL METHOD, get ("LEL_SIGNAL METHOD"), Enums.MRMethod.SMAa)):
inputs.addRow (new IntegerDescriptor (Inputs.PERIOD, get ("LEL PERICD1"™), 12, 1, 3333, 1));

inputs.addBow (new IntegerDescriptor (Inputs.PERIODZ, get ("LEL_PERICD2"), 26, 1, 9333, 1))

inputs.addRow (new IntegerDescriptor (Inputs.SIGNAL PERIOD, get ("LBEL_SIGMARL_PERIOCD"), 9, 1, 9933, 1)):
tab.addGroup (inputs) ;

= new Settlng’l‘abtget ("TRE_DISPLAY")):

Y W WP W WY

Figure 62 - Resolving text using the get method with parameters

if (pMACD <= pSignal &£& MACD > =ignal) {
MarkerInfo marker = getSettings().getMarker (Inputs.UF MARKER);
if (marker.isEnakbled() && !latest) {
addFigure (new Marker (c, Enums.Position.BOTTOM, marker)):
}
e ctx.signal (index, Signals.ClROSS ABOVE, get ("SIGWAL MACD CROSS RBOVE™, MACD, =ignal), signal);
H
else if (pMACD >= pSignal &£& MACD < =signal) {
MarkerInfo marker = getSettings().getMarker (Inputs.DOFN MARKER) ;
if (marker.isEnakbled() && !latest) {
addFigure (new Marker (c, Enums.Position.TOP, markerxr)):
}
ctx.signal (index, Signals.ClROSS BELOW, get ("SIGWAL MACD CROSS BELOW", MACD, =ignal), signal);

B T e A e W Ry S

get method using parameter
replacements (%1, %2 in
strings.properties)

\

Version 1.3 ©2019 MotiveWave™ Software Page 73 of 85

MotiveWave™

SDK Programming Guide mOtiVe_‘Jave®

Figure 63 - strings.properties file

MENU OVERLAY=Overlays

MENU BAR PATTERNS=Ear Patterns
MENU GENERAL=General

MENU VOLUME=Volume Based ltems declared in the resource
MENU WELLES WILDER=Welles Wilder bundle are in the form:

MENU BILL WILLIAMS=Bill Williams
MENU TUSCHARD CHANDE=Tushar Chande ID=translatable text
MENU MARC CHAIRIN=Marc Chaikin
MENU SIGNALS=Signals

MENU CUSTCOM=Custom

HMENU MOVING AVERAGE=Moving Average

TAE GENERAL=General
TAE ADVANCED=Advanced
TAE INFUTS=Inputs
TAB COLORS=Colors
TAE D =D

TITLE MACD=Moving Average M{m (MZCD)
LBL MACD=MRCD
PESC MACD=Shows the difference between a fast and slow moving average of prices. A
ACD is often used to indicate changes in market trends. Created by Gerald Appel in the 13960s.
a href="http://en.wikipedia.org/wiki/MACD">Click here for more information.
5L SIGNAL PERIOD=Signal Period
8L SIGNAL METHOD=5ignal Method Mote: HTML is permitted
5L MACD LINE=MACD Line in the description {only).
5L SIGNAL LINE=S5ignal Line
BL_EBARR COLCR=Ear Color
8L MACD IND=MACD Indicator
8L SIGNAL IND=5ignal Indicator %1, %2 etc will be
3L MACD HIST IND=Histogram Indicator

replaced at runtime
BL_MACD SIGNAL=MACD Signal with actual values

5L MACD HIST=MACD Hist
SFIGNAL MACD CROSS5_RBOVE=MACD: %1 crossed above signal line:
EIGNAL MACD CRO BELOW=MACD: 31 crossed below signal line:

Version 1.3 ©2019 MotiveWave™ Software Page 74 of 85

MotiveWave ™

SDK Programming Guide “ nOtlve aveﬂ*

11 Deployment

The process of installing your extensions in MotiveWave™ is referred to as ‘Deployment’. There are
essentially two use cases for deploying extensions:

1. Development — As you are coding your extension, you will want to deploy your changes to
MotiveWave™ so you can test your changes.

2. Distribution — When you have completed development you will want to package your extensions
and make them available to other users.

11.1 Packaging

You may distribute your extensions by providing the .class (and .properties) files directly to your
customers but you may find this awkward if you have more than one.

The preferred way to distribute these files is to package them together in a Jar (Java ARchive) file. This is
a standard Java mechanism for distributing Java libraries or applications. If you would like to know more
about this format you can visit this website address:
http://java.sun.com/developer/Books/javaprogramming/JAR/

The sample Eclipse project includes the ability to create a Jar file for distribution in the ANT build script.
You may also use the deployment features of Eclipse to create your Jar file.

11.2 Loading Extensions

MotiveWave™ will dynamically load extensions from the directory ‘MotiveWave Extensions’. This
directory is created by MotiveWave™ when it first starts. Depending on the environment you have, it
will be found:

1. Windows — C:\Documents and Settings\<username>\MotiveWave Extensions
2. Mac OSX - /Users/<username>/MotiveWave Extensions

This directory is searched (recursively) for the following types of files:

1. JARFiles (.jar) — These are essentially ‘zip files’ that contain .class and .properties files

2. Class Files (.class) — These files are generated by the javac compiler. Note: you must preserve
the directory structure when copying these files into the ‘MotiveWave Extensions’ directory. For
example classes in the ‘study_examples’ package must be put in the ‘MotiveWave
Extensions\study_examples’ directory.

3. Properties Files (.properties) — These files contain the translatable text that has been separated
from the code (see section on Internationalization). Similar to the class files, you must preserve
the directory structure when copying these files into ‘MotiveWave Extensions’ directory.

‘last_updated’ File

If you look in the ‘MotiveWave Extensions’ directory (Note: this is a hidden file on Mac OSX) you will see a
file called “.last_updated’. MotiveWave™ uses this file to determine is any of the files in this directory have
been changed since its last scan. If you want to test your changes without restarting MotiveWave™, you
will need to copy your changed files to ‘MotiveWave Extensions’ and then modify the timestamp on this file
(for example using the Unix ‘touch’ command).

The sample build.xml file (Apache ANT script) shows an example of how to modify this file to get

Version 1.3 ©2019 MotiveWave™ Software Page 75 of 85

http://java.sun.com/developer/Books/javaprogramming/JAR/

MotiveWave™

SDK Programming Guide ‘nOtive ave

| MotiveWave™ to reload extensions. |

11.3 Third-Party Libraries (jars)

Starting with version 5.4.21 third-party libraries (jar files) can now be used in the SDK. These jar files
must be added in the ext subdirectory of the MotiveWave Extensions directory. On startup of
MotiveWave, all jar files in this subdirectory will be added to the class path. If any jar files are added or
modified in this directory, MotiveWave will need to be restarted to pick up the new changes.

The screen shot below shows an example of third-party libraries added to the ext directory in the
Motive Wave Extensions.

| & v |ext - | X
Home Share View v o
&« v > This PC » OS(C:) » Users > Tony-XPS > MotiveWave Extensions > ext v U Search ext P]
[Name Date modified Type Size
_| commons-pool2-2.6.0.jar 12/19/2018 11:38 ... JARFile 128 KB
_| jedis-3.0.0jar 12/19/2018 10:00 ... JAR File 573 KB
_| slfdj-api-1.7.25 jar 12/19/2018 11:39 ... JARFile 41 KB
3 items =

Version 1.3 ©2019 MotiveWave™ Software Page 76 of 85

MotiveWave ™

SDK Programming Guide “ nOtlve aveﬂ*

12 Environment Setup

You may use any Java™ development environment you wish to develop extensions for MotiveWave™.
This section will explain how to get up and running with the Eclipse Integrated Development
Environment (IDE). We have also included a sample Eclipse Project that you may use as a starting point
for your own development. This sample project contains a build script (Apache ANT based) that makes it
easy to deploy your changes to MotiveWave™ and package your extensions for distribution.

Eclipse (www.eclipse.org) is the most popular tool for Java development and best of all its free! There
are many different environments for Java development, some of the more notable tools include:

1. NetBeans — This Open Source development environment is free as well and is developed by Sun
(now Oracle)

2. Intelli) — http://www.jetbrains.com/idea

3. JCreator — http://www.jcreator.com

12.1 Where do | get the SDK?

The SDK (Software Development Kit) is built directly into MotiveWave™, but if you want to download
the mwave_sdk.jar, java doc and sample project you can get it from here:
http://support.motivewave.com/sdk/

12.2 Installing Java

If you have not done so already, you will need to download and install the Java Development Kit (JDK).
Please note: this is different than the Java Runtime Environment (JRE) as it contains development tools
such as the Java compiler (javac).

Version 5 of MotiveWave™ supports Java 1.8.0_121 and higher. If you are using an older version of
MotiveWave, you should check the installed Java version by choosing Help -> About from the console
menu bar.

The Java Development Kit can be downloaded here:
http://www.oracle.com/technetwork/java/javase/downloads/index.html

12.3 Installing Eclipse

Eclipse comes in many different versions (and flavors). For our purposes we just need basic Java
functionality so we will download ‘Eclipse IDE of Java Developers’. This can be found at the following
website: http://www.eclipse.org/downloads/

There are many different tutorials and books available to help you get started with Eclipse. If you don’t
want to search the internet, you can start here: http://www.eclipse.org/resources/?category=Tutorial

Here is a link to an introduction of the Java IDE: http://www.eclipse.org/resources/resource.php?id=505

12.4 Creating a Project

The first step to creating your own extensions is to create a project in Eclipse. From the top menu bar of
Eclipse choose: File -> New -> Java Project

Version 1.3 ©2019 MotiveWave™ Software Page 77 of 85

http://www.eclipse.org/
http://www.jcreator.com/
http://support.motivewave.com/sdk/
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.eclipse.org/downloads/
http://www.eclipse.org/resources/?category=Tutorial
http://www.eclipse.org/resources/resource.php?id=505

MotiveWave™

. - M ‘ r‘ﬁ\
SDK Programming Guide i IO'[IVG .JaVe
£ dev - Java - Eclipse
File Edit Scurce Refactor Mavigate Search Project Run Window Help
Mew Alt+Shift+N > (2 Java ijecll\'}
Open File... =4 jech,.
[} Open Projects from File System... 55
Close W | @ Click thE to create a
)) new project
Close All Ctrl+Shift+W |
Save Ctrl+S & Enum
Save .., @ Annotation
Save Al Chrl+ Shift+ S &9 Source Folder
Ranrart 14 Java Working Set

This will launch the New Project Dialog (see below). Enter a name for the project and click the Finish
button. In the next step we will be importing the sample project so there is no need to configure
anything specific for this project.

Version 1.3 ©2019 MotiveWave™ Software Page 78 of 85

MotiveWave ™ m O'[IV eulave

SDK Programming Guide

& MNew Java Project O *

Create a Java Project —
Create a Java project in the workspace or in an external location,

Project name: | MotiveWawve Studies Examples |

Use default location

Enter a name

ChdeviMotiveWave Stu . Browse...
for the project

JRE

(®) Use an execution envirenment JRE: JavaSE-1.8 w

() Use a project specific JRE: jdk1.8.0_121

() Use default JRE (currently 'jdk1.8.0_1217 Configure IREs...
Project layout

() Use project folder as root for sources and class files

(®) Create separate folders for sources and class files Configure default...
Working sets

[] Add project to working sets Mew...

Select...

Click Finish (Don't choose
Next as we will be importing
the sample project)

?\ < Back Mext = Cancel

Now that you have created an initial project you can import the sample project files from the zip file
‘MotiveWave Studies.zip’. Right click on the ‘MotiveWave Studies’ project that you just created and

choose ‘Import...” from the menu.

Version 1.3 ©2019 MotiveWave™ Software Page 79 of 85

MotiveWave™

SDK Programming Guide

motivelave’

& dev - Java - Eclipse
File Edit Source Refact

5 [MotiveWave Studies

ar

% & ()

% FE

Mavigate Search Project Run Window Help

- Sivit - Q- Q- W - @O ARG D
[# Package Explorer 37 Y& Type Hierarchy %5 Mavigator = B
e

Right Click on the project
that you just created .

Go Into

Open in New Window

Open Type Hierarchy F4
Show In Alt+Shift+W >
Copy Ctrl+C
Copy Qualified Name

Paste Ctrl+V
Delete Delete
Remove from Context Ctrl+ Alt+Shift+ Down
Build Path ¥
Source Alt+5Shift+5 »
Refactor Alt+5Shift+T »
| rto..

mee l:} Choose Import
Export...

Refresh F53

Close Project

From the Import Dialog, open the ‘General’ folder and choose ‘Archive File’

Version 1.3

©2019 MotiveWave™ Software

Page 80 of 85

MotiveWave™ motlve _"ave@

SDK Programming Guide

& Import O *
Select \‘J
Import resources from an archive file into an existing project. | @ 5 I

Select an import wizard:

type filter text

v [General ! Choose Archive File -
I Archive File

=% Existing Projects into Workspace
[_} File System
[} Preferences
[— Projects from Folder or Archive
= Git
== Gradle
= Install
= Maven
= Qomph
= Run/Debug
= Tasks

= Teamn
S WAL

Click Mext
I: —

® < Back Mext = Finish Cancel

The next step is to specify the archive (.zip) file. In this case it will be ‘MotiveWave Studies.zip’. If you
have not done so already, download this sample project from the MotiveWave™ (see:
http://www.motivewave.com/support/sdk.htm)

You may be asked to confirm the overwriting of some files like ‘.classpath’. If this happens, press OK to
accept the changes.

Version 1.3 ©2019 MotiveWave™ Software Page 81 of 85

MotiveWave ™ : ®
. . n i
SDK Programming Guide notiveijave
& Import O x
Archive file ’J:—“ _
Import the contents of an archive file in zip or tar format from the local file system. -
p P 5y -hj"‘
From archive file: | ChUsersh Tony Desktopi\ MotiveWave_Studies.zip v| Browse...
W = f
v [w] = MotiveWave Studies
s [settings Click on the Browse button and
s e bin tind the MotiveWave_ Studies.zip
s & build file that you downloaded as part
s e lib of the SDK
> = src
Filter Types... Select All Deselect All
Into folder: | MotiveWave Studies Browse...

the import. Overwrite

Make sure this is the project HEE
that you just created any files if prompted

Click Finish to complete

f

\'4
@ o || e

Once the import is complete, the structure of you project should look like the screenshot below.

Version 1.3 ©2019 MotiveWave™ Software

Page 82 of 85

MotiveWave™

SDK Programming Guide mOtiVe_‘Jave®

& dev - Java - Eclipse
Eile Edit Source Refactor Mavigate Search Project Bun Window Help
N R % -0 % B G OS A ey D

[Package Explorer 5% T;g Type H

All source files should be placed
under this directory. You can
v =) MotiveWave Studies create your own packages and
v [src studies/strategies here.
v i study_examples
v B onls
2| strings.properties Contains translatable

> [J] CompositeSample.java text from the studies
> [MyMovinghverage java
> [J] SampleMACross.java
y [SampleMACrossStrategy.jaﬁ Sample studies.
[7] SirmpleMACD.java
5 =i\ Referenced Libraries
» B JRE System Library [jdk1.8.0_121]
w (= build
3 [classes

£ buildxml

Manifest.MF
v (= lib

¥ dke,j
2 mwa?e.'s Ja.r Contains MotiveWave
m sdk_api_doc.zip

SDK classes

et

Use this file to deploy changes
and/or build the jar file.

APl documentation

Now that you have the project created, you can deploy this to MotiveWave™. The ‘build.xml’ file (under

the ‘build’ folder can be used to compile your code and copy the files to the ‘MotiveWave Extensions’
directory. Right click on this file and choose ‘Run As -> Ant Build’

Version 1.3 ©2019 MotiveWave™ Software Page 83 of 85

MotiveWave™

SDK Programming Guide

motivelave’

v [MotiveWave Sti
w [s
v i} study_e
v B onls

HNEM
¥ =
33%
I it

& build.xr
Manifes

v = lib o
g mwave |
E sdk_api_ g

&

O f H
o= Outline 3

Mew

Open
Open With

Show In

Copy

Copy Qualified Name
Paste

Delete

ternove from Context
Mark as Landmark
Build Path

Refactor

Import...
Export...

Refresh
Assign Working 5ets...

Validate

Open Javadoc Wizard...

Run As
Debug As
Profile As
Team

Compare With

S dev - Java - MotiveWave Studies/build/build.xml - Eclipse

-

F3
»
Alt+Shift+W »

Ctrl+C

Ctrl+V
Delete

Ctrl+Alt+Shift+ Down
Ctrl+Alt+ Shift+ Up

]

Alt+Shift+T »

re

Eile Edit 5curce Refactor MNavigate Search Project Bun Window Help
- SN0 QU WO OO P SRE PG oD
[Package Explorer 5% 'Eg Type Hierarchy T=. Mavigator = 8 % buildxml 52
<:C:'D| = W 1 <?xml version="1.8" encoding="UTF-8"2>

This is a sample build/deployment script.
By default, this script simply deploys the classes a
the 'MotiveWave Extensions\dev' directory (under use

This script alsc has the ability to create a jar fil
in this project. The jar file makes it easier to di

>
roject default="deploy":
<!-- user.home is C:\Documents and Settingsi<user na

<property name="ext.dir"”
<property name="dev.dir"
<property name="src.dir”
<property name="bin.dir" value="../bin/"/>

<property name="lib.dir" value="../lib/"/>

<!-- Name of the jar file (created in the 'jar' targ
<property name="jar.name" value="examples"/>

value="%{user.home}/Motivel
value="%{ext.dir}/dev"/>
value="../src/"/>

<!-- This alternative deployment task, copies all cl
to the extensions directory (instead of creatin

<target name="deploy” depends="compile”:>
<!-- Copy all .class and .properties files. These
in the extensions directory. This directory

Choose
Run As ->

»

f the files. -->»

ir="§{dev.dir}"/>

="g{dev.dir}"/>

ir="f{dev.dir}"” overwrite="true">

leset dir="classes" includes="**/*, class"/>

Ant Build

1AntBuld Alts Shift+ X, Q =
$ 3 AntBuild.. 1

External Tools Configurations... bin\javi

7 WARNING GoogleYahooService::requestHistoricalNews(
3 INFO GET Error: status code: 488 url: http://www.g

By default this will run the ‘deploy’ target. This task will compile all of the source code under the ‘src’
folder and then copy it to the MotiveWave Extensions directory. Finally, it will modify the
‘last_updated’ file to signal MotiveWave™ that it should scan for changes and load them.

The ‘Console’ tab will show the output from this action. It should look similar to the following screen

shot:

Version 1.3

©2019 MotiveWave™ Software

Page 84 of 85

MotiveWave ™ . "
SDK Programming Guide mOtlve—"aVe
Problems @& Javadoc Search [BJ Console 52 &g Progress [§] Task List (%)= Variables @g Breakpoints = B8

X% GEEFEE 1B

<terminated> MotiveWave Studies build.aaml [Ant Build] ChProgram Files'Java'ydk1.8.0_12T\bin\javaw.exe (Feb 13, 2017, 10:06:03 AM)

Buildfile: C:‘dev\MotiveWave Studies‘buildibuild.xml
clean:
[delete] Deleting directory C:h\deviMotiveWave Studies‘build\classes
compile:
[mkdir] Created dir: C:\deviMotivelWave Studies’build\classes
[iavac] Compiling 5 scurce files to C:h\dev\Motivelawe Studies‘\buildiclasses
deploy:
[delete] Deleting directory C:\Users\Tony\MotivelWave Extensions\dev
[mkdir] Created dir: C:\Users\Tony\Motivellave Extensicnsidev
[copy] Copying 12 files to C:\Users\Tony\MotiwveWave Extensionsidev
BUILD SUCCESSFUL
Total time: 1 second

Finally, if you have MotiveWave™ running, you should see an extra menu ‘Examples’ under the ‘Study’
menu that contains the two sample studies (see below)

(" MotiveWave - Console (google)
File Edit WView | Study | Strategy Format Configure Window Help
AAPL ~ Q| W |&i Add Study CrkT K B @w~Q i~ + ™ |2~ |15mi
Ll AAPL 15m= x |Lul |~ Recent '
!) Instrument] : :
MPLE' 15 min Moving Average ' i i
i Overlays ' i i
i Astrological ' i i
i Bar Patterns ' i i
i General ' : :
i Volume Based ' i '*
i Welles Wilder ' i i
| Bill Williams v 1
! : Lod! thi
| Tushar Chande ' | itia! " iI Th
5 L4 ikin b Hi These are the 3 studies
Notice that there is a new d ii i that you deployed from
menu item here Examples | Elder d i I the sample project.
v § ;
| T\ Mars v m+ i
i Examples [* | My Moving Average
i John Ehlers ' | Sample Moving Average Cross
! Oscillators ' | Simple MACD
i Performance b
. William Blau '

Version 1.3 ©2019 MotiveWave™ Software Page 85 of 85

