

MotiveWave™
Software Development Kit (SDK)

Programming Guide
Version: 1.3

©2019 MotiveWave™ Software

MotiveWave™
SDK Programming Guide

Version 1.3 ©2019 MotiveWave™ Software Page 1 of 85

Preface

This document explains how to use the MotiveWave™ Software Development Kit (SDK) to implement
custom studies and strategies. The primary audience of this material is individual traders, or consultants
(both with a programming background, aka developers) looking to implement (and possibly distribute)
custom studies and/or strategies.

The development kit is based on the Java™ programming language. While advanced knowledge of this
language is not required, it is recommended that the person implementing the study or strategy have a
basic background in the language before reading this document.

Developers are free to use any development environment, including the command line tools in the
Java™ Development Kit. Examples provided will be with the Eclipse IDE (Integrated Development
Environment) available from: http://www.eclipse.org.

This document is intended to be a guide on how to use the SDK and is not a complete programming
reference. API (Application Programming Interface) documentation is available (generated using
Oracle’s Javadoc tool) that explains all of the classes, interfaces and enumerations provided by the SDK.

MotiveWave™
SDK Programming Guide

Version 1.3 ©2019 MotiveWave™ Software Page 2 of 85

Change History
Several enhancements have been added in version 1.1 of the SDK (these are compatible with version 2.2
and higher of MotiveWave™). These enhancements include the following:

1. Path Color – The color of a path can be changed dynamically (DataSeries::setPathColor(…) see
API documentation).

2. Multiple Instruments – Studies/Strategies may incorporate data for one or more instruments.
Trades may also be placed on more than one instrument.

3. Composite Studies – A study may be composed of multiple study plots and overlays.
4. Access Control – Distribution and usage of your studies/strategies can be controlled and

managed using a web interface.
5. Trading Sessions – These may be used to constrain the trading hours for a strategy (intraday data

only).
6. Help Link – This new attribute on the StudyHeader allows you provide a link to a webpage with

more information on the study/strategy.

The following changes have been added in version 1.2 of the SDK (these are compatible with version 5.0
and higher of MotiveWave™). These enhancements include the following:

1. Tick Data – Support for live and historical data. See section on Tick data.

The following changes have been added in version 1.3 of the SDK (these are compatible with version 5.3
and higher of MotiveWave™). These enhancements include the following:

1. Resize Points – Support mouse interaction using resize points.
2. Context Menu – Support for custom items added to the context menu (right click on study)

MotiveWave™
SDK Programming Guide

Version 1.3 ©2019 MotiveWave™ Software Page 3 of 85

Table of Contents
Preface 1

Change History 2

1 Introduction 5

1.1 What is a Study? 5

1.1.1 Overlays 5

1.1.2 Study Plots 6

1.2 What is a Strategy? 7

1.3 Distribution 8

1.3.1 Access Control 8

2 Fundamental Classes 9

2.1 Packages 9

2.2 Study Class 9

2.3 StudyHeader 11

2.4 Describing User Settings 11

2.4.1 SettingsDescriptor class 13

2.4.2 SettingTab Class 14

2.4.3 SettingGroup Class 15

2.5 Settings class 16

2.6 Runtime Settings 18

2.6.1 Composite Studies 19

2.7 DataContext Interface 20

2.8 DataSeries Interface 21

2.9 Multiple Instruments 23

2.9.1 Design Time 24

2.9.2 Run Time 26

2.10 Custom Context Menu 26

2.11 Miscellaneous Classes 28

3 Overlay Example: ‘My Moving Average’ 30

3.1 StudyHeader Annotation (@StudyHeader) 31

3.2 initialize method 32

3.2.1 Design Time Information 34

3.2.2 Run Time Information 36

3.3 calculate method 36

4 Study Plot Example: ‘Simple MACD’ 38

4.1 StudyHeader Annotation (@StudyHeader) 41

4.2 initialize method 41

4.3 calculate Method 43

5 Drawing Figures 45

5.1 Figure Class 45

5.2 Box 46

5.3 ColorRange Class 46

5.4 Line Class 47

5.5 Polygon 47

MotiveWave™
SDK Programming Guide

Version 1.3 ©2019 MotiveWave™ Software Page 4 of 85

5.6 ResizePoint 47

5.6.1 Resize Types 48

5.6.2 Absolute Positioning 49

5.7 SinglePointFigure 49

5.7.1 Marker Class 50

5.7.2 Label Class 50

6 Signals 51

7 Tick Data 54

8 Strategies 56

8.1 StudyHeader 56

8.2 Study Class 57

8.3 OrderContext Interface 58

8.4 Order Interface 60

8.5 Trading Sessions 62

8.5.1 Runtime Support 63

8.6 Sample MA Cross Strategy 64

8.7 Strategy States 66

8.8 Manual Strategies 67

8.8.1 Entry States 68

9 Logging 70

10 Internationalization 72

10.1 Example: MACD 72

11 Deployment 75

11.1 Packaging 75

11.2 Loading Extensions 75

11.3 Third-Party Libraries (jars) 76

12 Environment Setup 77

12.1 Where do I get the SDK? 77

12.2 Installing Java 77

12.3 Installing Eclipse 77

12.4 Creating a Project 77

MotiveWave™
SDK Programming Guide

Version 1.3 ©2019 MotiveWave™ Software Page 5 of 85

1 Introduction

Welcome to the MotiveWave™ Software Development Kit (SDK)! If you are reading this document then
you are interested in developing a custom study and/or strategy for use within MotiveWave™.

Knowledge of the Java™ programming language is necessary for you to implement your
studies/strategies. If you are unfamiliar with this language, it is recommended that you consult a book
or take a basic course on Java programming.

All of the studies and strategies that are built into MotiveWave™ were programmed using the SDK. The
source code for these are freely available and may be used as examples or starting points.

Before you begin, it is important to understand studies and strategies and the difference between them.

1.1 What is a Study?

A study uses historical price and/or volume data to display new information to the user to assist them in
making buying or selling decisions. There are two types of studies:

1. Overlays
2. Study Plots

It is also possible to create studies that contain multiple plots and overlays.

1.1.1 Overlays

Overlays display information that is drawn on top of an existing plot (most typically the price plot). What
is actually displayed depends on the study itself. Some examples of what a study may display include:

• Paths – A path is a series of lines that connects data points. Examples of this include a moving
average or price bands.

• Markers – Markers may be used to indicate points of interest (such as buy, sell or stop loss
locations). Markers come in many forms: arrows, circles, triangles, letters, numbers etc

• Shades – Area of a plot may be shaded to indicate zones of interest

• Lines – May include trend lines, support or resistance areas

• Paint Bars – Price or volume bars may be displayed using specific colors

• Text – Descriptive text may be used to explain elements of the study

• Figures – any type of figure or drawing may be drawn on a plot as part of the overlay.

• Indicators – Indicators may be added to the vertical axis to show the current value of a study.

The following screen shot illustrates an example of some of the elements that may be part of an overlay:

MotiveWave™
SDK Programming Guide

Version 1.3 ©2019 MotiveWave™ Software Page 6 of 85

Figure 1 - Overlay Example

1.1.2 Study Plots

Study plots display information drawn in a plot that is separate from the price plot. The typical reason
why this is displayed in a separate plot is because the values generated are independent (or outside) of
the price range.

Overlays may be added to a study plot to display additional information (such as a moving average).

The following screen shot shows some examples of study plots:

MotiveWave™
SDK Programming Guide

Version 1.3 ©2019 MotiveWave™ Software Page 7 of 85

Figure 2 - Study Plot Example

1.2 What is a Strategy?

A strategy is a special type of study that may be used to automate or partially automate trading. In
addition to displaying the study information, a Control Box is made available that allows the user to
activate/deactivate a strategy and view important runtime information. The following screen shot
shows an example of the Moving Average Cross Strategy:

MotiveWave™
SDK Programming Guide

Version 1.3 ©2019 MotiveWave™ Software Page 8 of 85

Figure 3 Strategy Example

MotiveWave™ supports two modes for strategies:

1. Automatic – Once the user activates the strategy, it will automatically buy and sell based on the
internal logic.

2. Manual – In this mode, the user tells the strategy when it is OK to enter.

1.3 Distribution

Studies (and strategies) may be distributed to users by packaging them together in Jar (Java™ Archive)
files. If you feel the need to protect the contents of these packages you may use obfuscators (such as
ProGuard) to prevent reverse engineering of the binary code.

1.3.1 Access Control

You can control the access to a set of studies/strategies by using the ‘secured’ attribute in the Study
Header. Setting this attribute to ‘true’ will ensure that only users that you have given access will be
allowed to load and execute studies and strategies in the given namespace.

Access control requires an account to be setup with MotiveWave™. If you would like to utilize this
feature, send an email requesting that an account be created to: support@motivewave.com.

mailto:support@motivewave.com

MotiveWave™
SDK Programming Guide

Version 1.3 ©2019 MotiveWave™ Software Page 9 of 85

2 Fundamental Classes

This section describes the fundamental classes that you will need to interact with when building your
custom study/strategy. For a complete view of all of the classes/interfaces in the SDK, please consult
the API documentation.

2.1 Packages

The SDK consists of the following 6 packages:

1. com.motivewave.platform.sdk.common – Contains common classes and interfaces. These
include ‘info’ classes, enumerations, utility functions and ‘context’ classes that expose
functionally and data from MotiveWave™

2. com.motivewave.platform.sdk.common.desc – Contains ‘Descriptor’ classes. These are used to
describe settings and values to the MotiveWave™ runtime environment.

3. com.motivewave.platform.sdk.common.menu – Contains classes for implementing custom
context menus.

4. com.motivewave.platform.sdk.draw – The classes in this package are used to draw figures on
the price and study plots.

5. com.motivewave.platform.sdk.study – Contains the base classes for creating and interacting
with studies and strategies.

6. com.motivewave.platform.sdk.order_mgmt – Contains classes/interfaces for managing orders.
These are used in conjunction with strategies.

2.2 Study Class

The Study class is the base class for all studies and strategies. When implementing any study/strategy
you will first start by deriving directly or indirectly from this class.

Why is there no Strategy Class?

Strategies are a specialized version of a study, in fact most strategies are based (at least in part) on an
existing study. If there was a separate Strategy class it would be difficult (if not impossible) to implement a
strategy by deriving from an existing study. It is for this reason that the methods and properties that are
specific to strategies are included in the Study class.

For most studies there are two methods that you will override:

1. initialize – The purpose of this method is to describe the user configurable settings for the study
and describe the runtime behavior.

2. calculate – This method calculates the values for the study at the given historical bar.

The following diagram illustrates the basic elements that you need to be concerned with in the Study
class. For a complete list of methods and properties, see the API documentation.

MotiveWave™
SDK Programming Guide

Version 1.3 ©2019 MotiveWave™ Software Page 10 of 85

Figure 4 - Basic Study Methods

There are 3 main properties in the Study class that are important for implementing a study:

1. Runtime Descriptor – this describes the runtime behavior of the study
2. Settings Descriptor – This describes the user settings
3. getSettings() – This is typically used in the calculate method to get access to the settings that the

user has chosen.

Figure 5 - Study Properties

MotiveWave™
SDK Programming Guide

Version 1.3 ©2019 MotiveWave™ Software Page 11 of 85

2.3 StudyHeader

The StudyHeader is an annotation that is required on every class derived from the Study class. The
purpose of this annotation is to describe static information about the study/strategy.

The StudyHeader is read when the Study class is first loaded and is used to register the study with
MotiveWave™ and make it available in the Study menu and the ‘Add Study’ dialog.

The following screen shot shows some of the important properties of the StudyHeader. For a full
description of all properties see the API documentation.

Figure 6 - StudyHeader properties

2.4 Describing User Settings

The MotiveWave™ SDK provides a lot of flexibility when describing user settings for a study. Settings
may be organized into tabs and groups which are displayed in the study dialog. MotiveWave™ also
provides many different setting descriptors to represent different types of settings.

MotiveWave™
SDK Programming Guide

Version 1.3 ©2019 MotiveWave™ Software Page 12 of 85

The following screen shot illustrates the study dialog for a CCI study:

Figure 7 - Study Dialog

The classes for describing user settings can be found in the package:
com.motivewave.platform.sdk.common.desc. The following UML (Universal Markup Language)
diagram illustrates the high level classes involved and how they relate to each other. For a full list of the
available SettingDescriptor classes, see the API documentation.

MotiveWave™
SDK Programming Guide

Version 1.3 ©2019 MotiveWave™ Software Page 13 of 85

Figure 8 - Descriptor Classes

+addTab()

+getTabs()

+addDependency()

+getDependencies()

+getSettings()

+getSetting()

+getDefaultValue()

SettingsDescriptor

+addGroup()

+getGroups()

-name

SettingTab

1 *
+addRow()

+getRows()

-name

SettingGroup

1 *

+createInput()

-name

-label

-showLabel

-defaultValue

-enabled

-supportsDisable

SettingDescriptor

ColorDescriptor PathDescriptorBarDescriptor IntegerDescriptorInputDescriptor ...

1

*

Base Class for all

setting descriptors

Contains all of the

setting descriptors.

For a full list, see API

documentation.

2.4.1 SettingsDescriptor class

The SettingsDescriptor class contains all of the user configurable settings. An instance of this class
should be created in the ‘initialize’ method (of the Study class) and assigned to the study using the
‘setSettingsDescriptor’ method.

There are two methods in this class that are important:

1. addTab – Adds a SettingTab object that contains settings on a tab in the Study Dialog
2. addDependency – Used to identify dependencies between settings. For example, an

‘EnabledDependency’ will enable a setting if a BooleanSetting is true or false.

MotiveWave™
SDK Programming Guide

Version 1.3 ©2019 MotiveWave™ Software Page 14 of 85

Figure 9 - SettingsDescriptor

2.4.2 SettingTab Class

The SettingTab class represents a tab in the study dialog. This simple class consists of a name (to display
in the tab) and a set of SettingGroup instances.

MotiveWave™
SDK Programming Guide

Version 1.3 ©2019 MotiveWave™ Software Page 15 of 85

Figure 10 - SettingTab class

2.4.3 SettingGroup Class

The SettingGroup class organizes related settings into a named group. The group consists of a set of
rows that each contains 1 or more setting descriptors.

Figure 11 - SettingGroup class

MotiveWave™
SDK Programming Guide

Version 1.3 ©2019 MotiveWave™ Software Page 16 of 85

2.5 Settings class

The Settings class contains all of the information about the settings configured by the user of the study.
You can access this class by using the getSettings() method in the Study base class.

Many of the setting descriptor classes have corresponding ‘Info’ classes (see
com.motivewave.platform.sdk.common package) that contain the user specific settings. These may be
accessed using a series of ‘get’ methods on the Settings class. The following screen shot illustrates some
of these methods. For a complete description of the Settings class and the Info classes see the API
documentation.

MotiveWave™
SDK Programming Guide

Version 1.3 ©2019 MotiveWave™ Software Page 17 of 85

Figure 12 - Settings class

MotiveWave™
SDK Programming Guide

Version 1.3 ©2019 MotiveWave™ Software Page 18 of 85

2.6 Runtime Settings

The RuntimeDescriptor (com.motivewave.platform.sdk.study package) is used to describe runtime
behavior for the study. This includes the following:

1. Label Settings – used to describe how the label is generated
2. Export Values – These are values generated by the study that may be used outside of the study.
3. Declare Elements – These methods associate values generated by the study to visual constructs

on the ‘default’ plot (see Composite Studies below for more information):
a. Paths – A series of values connected by lines
b. Bars – Vertical bars displayed on a plot
c. Signals – Signals generated by the study
d. Indicators – Indicators displayed on the vertical axis

4. Study Plot Settings (default plot)
a. Top/Bottom Insets – Used to add space to the top or bottom of the plot
b. Vertical Range – Range of the vertical axis
c. Min Tick – precision of the vertical axis values
d. Horizontal Lines – Horizontal lines displayed on the study plot

Why do I need to declare elements such as a Path?

You may ask yourself, ‘why doesn’t the PathDescriptor (or other descriptor classes) class include the value
key?’. While this may make sense in most situations, it does not allow you to use the same path
information for multiple paths. Consider for example a case where you have a price bands study and you
want to have the same settings for the top and bottom bands. By declaring the path for the top and
bottom values as the same path info, you are able to re-use this descriptor object.

MotiveWave™
SDK Programming Guide

Version 1.3 ©2019 MotiveWave™ Software Page 19 of 85

Figure 13 - RuntimeDescriptor class

2.6.1 Composite Studies

The majority of studies consist of either a single overlay or a single plot. Version 1.1 of the SDK allows
you to create studies that consist of multiple study plots and (optionally) overlays on the price plot.

MotiveWave™
SDK Programming Guide

Version 1.3 ©2019 MotiveWave™ Software Page 20 of 85

The RuntimeDescriptor class enables you to define additional plots for a study. This class has been
enhanced in version 1.1 to allow the definition of additional plots using the new Plot class (see
com.motivewave.platform.sdk.study package).

The majority of methods on the RuntimeDescriptor class operate on the ‘default’ plot for the study. In
the case of an overlay, the default plot will be the plot where the overlay was added. For example,
when you add a simple moving average (SMA) to the price plot, the default plot for the overlay will be
the price plot.

Additional plots may be defined using the Plot class. Each plot has independent settings for labels, tabs,
range keys etc and elements are declared separately for each plot (ie paths, bars etc). The following
diagram illustrates the relationship between the RuntimeDescriptor and the Plot classes.

Figure 14 Runtime Descriptor and Plot classes

+addPlot()

+getPlot()

+getDefaultPlot()

+getPricePlot()

+exportValue()

+declareSignal()

+declarePath()

+declareBars()

+declareGuide()

+declareIndicator()

+setLabelSettings()

+setRangeKeys()

+addHorizontalLine()

+...()

RuntimeDescriptor

+declarePath()

+declareBars()

+declareGuide()

+declareIndicator()

+addHorizontalLine()

-name

-labelPrefix

-labelSettings

-tabName

-showLabel

-rangeKeys

-topInsetPixels

-bottomInsetPixels

-minTick

-enabled

-...

Plot

1 *
These

delegate

to the

‘default’

plot

Two reserved plots are defined:

Plot.PRICE – represents the price plot.

Use this to add overlays on the price plot.

Plot.DEFAULT – represents the primary

study plot.

2.7 DataContext Interface

The DataContext interface provides access to historical data as well as utility methods for interacting
with the study framework.

The following diagram illustrates some of the useful methods:

MotiveWave™
SDK Programming Guide

Version 1.3 ©2019 MotiveWave™ Software Page 21 of 85

Figure 15 - Data Context Interface

2.8 DataSeries Interface

The primary objective of the DataSeries interface is to provide a repository for historical price data and
data generated by the study. Data stored in this interface is accessed by a numerical index which
represents the price bar where the data applies.

The following diagram illustrates the structure of the data in the data series. Essentially the data is an
array of tables where the index ‘0’ is the first (oldest) bar and index ‘size()-1’ is the latest bar.

MotiveWave™
SDK Programming Guide

Version 1.3 ©2019 MotiveWave™ Software Page 22 of 85

Figure 16 - Data Structure

Historical

Data

Derived

Data

Computed

by Study

Open

High

Low

Close

Volume

Open

Interest

ATR

True

Range

Values.

RSI

Values.

MACD

..

..

Open

High

Low

Close

Volume

Open

Interest

ATR

True

Range

Values.

RSI

Values.

MACD

..

..

Open

High

Low

Close

Volume

Open

Interest

ATR

True

Range

Values.

RSI

Values.

MACD

..

..

[0] [index] [size()-1]

... ...

latest bar

The DataSeries interface also contains a number of convenience methods for calculating common values
such as moving averages, swing points and lowest or highest values.

MotiveWave™
SDK Programming Guide

Version 1.3 ©2019 MotiveWave™ Software Page 23 of 85

Figure 17 - DataSeries Interface

2.9 Multiple Instruments

Version 1.1 of the SDK offers support for multiple instruments. This allows you to retrieve real time and
historical data for one or more instruments (beyond the primary instrument) for studies and strategies.
For strategies you may also place orders for multiple instruments (see section on strategies).

MotiveWave™
SDK Programming Guide

Version 1.3 ©2019 MotiveWave™ Software Page 24 of 85

Please Note: Not all editions of MotiveWave™ include support for multiple instruments. In these cases,
studies requiring multiple instruments will not be accessible to the end user.

2.9.1 Design Time

Usage of multiple instruments requires the declaration of this feature in the StudyHeader and usage of
the InstrumentDescriptor to declare the instruments that will be used at run time.

There are essentially two items that are necessary to enable multiple instruments as part of the design
time:

1. Declare support for multiple instruments – In the StudyHeader set the attribute
multipleInstrument=true

2. Declare one or more instruments in the initialize() method – Use the InstrumentDescriptor to
declare one or more instruments. For details on how to use this class, see the API
documentation.

The following code snippet illustrates the usage of the ‘multipleInstrument’ attribute in the built-in
Spread study:

Figure 18 Multiple Instrument StudyHeader

MotiveWave™
SDK Programming Guide

Version 1.3 ©2019 MotiveWave™ Software Page 25 of 85

Figure 19 InstrumentDescriptor

The following screen shot demonstrates how the InstrumentDescriptor enables the user to choose the
instrument when they create the study

Figure 20 Instrument Input

MotiveWave™
SDK Programming Guide

Version 1.3 ©2019 MotiveWave™ Software Page 26 of 85

2.9.2 Run Time

Several enhancements have been added to the SDK to enable access settings and historical/real time
information in the run time portion of the study:

1. Settings – a new method getInstrument(key) on the Settings class allows you to retrieve the
instrument that the user chose when they created (or modified) the study.

2. DataSeries – several new methods have been added to the DataSeries interface for retrieving
information. Essentially, these are overloaded methods of getDouble(…), getHigh(…), getLow(…)
getClose(…) etc.

The following code snippet from the Spread study shows how to retrieve chosen instruments and
historical data from the DataSeries interface:

Figure 21 Spread calculate method

2.10 Custom Context Menu

Support for custom context menus was added in version 5.3 of MotiveWave. This feature enables a user
to interact with a study without having to open the study dialog. The following screen shot shows an
example of a custom context menu in the Trend Line study example. In this example two additional
items have been added to the context menu:

MotiveWave™
SDK Programming Guide

Version 1.3 ©2019 MotiveWave™ Software Page 27 of 85

1. Extend Left – Extends the trend line to the left of the screen
2. Extend Right – Extends the trend line to the right of the screen

The following excerpt from the TrendLine example study class demonstrates how to add custom menu
items. You can use the “plotName” (for composite studies) and “loc” parameters to customize the items
depending on where the context menu is requested (where the user does the right click).

Whenever a menu item is invoked the study is recalculated. Typically the ‘action’ part of the menu item
is to modify a setting in the study. When the study is recalculated, it will pick up the change to the study
settings.

Figure 22 TrendLine Example Study

MotiveWave™
SDK Programming Guide

Version 1.3 ©2019 MotiveWave™ Software Page 28 of 85

The following diagram illustrates the classes used to define custom context menus for a study.
Submenus can be created by using the Menu class (which contains a list of MenuItem, ie ‘items’). The
MenuSeparator class may be used to add dividers to the menu. Finally the MenuDescriptor class is used
to describe the context menu. Use the ‘includeDefaultItems’ to show or hide the default menu items
that are displayed as part of the context menu.

Figure 23 Package: com.motivewave.platform.sdk.common.menu

2.11 Miscellaneous Classes

The following diagram illustrates some additional classes that may be of interest. These classes are
available in the common package (com.motivewave.platform.sdk.common). For full details on these
and other classes, please consult the API documentation.

MotiveWave™
SDK Programming Guide

Version 1.3 ©2019 MotiveWave™ Software Page 29 of 85

Figure 24 - Miscellaneous Classes

+calcLatestMA()

+compare()

+toDouble()

+toInt()

+in()

+max()

+min()

+clipLine()

+distance()

+intersection()

+midpoint()

+rotate()

+slope()

+...()

Util

+getFont()

+getTextColor()

+getBackgroundColor()

+getLineColor()

+getBarColor()

+getTopFillColor()

+getBottomFillColor()

+...()

Defaults

+getSymbol()

+getTickSize()

+getPointSize()

+calcPnL()

+getLastPrice()

+getBidPrice()

+getAskPrice()

+round()

+format()

+...()

Instrument

-BarData

-BarInput

-MAMethod

-MarkerType

-ShadeType

-Size

-Position

-Priority

-ValueType

-TextAlign

-TextOutline

-...

Enums

-INDIAN_RED

-CORAL

-GOLD

-KHAKI

-LIME

-...

X11Colors

+getMinutes()

+getInterval()

+isIntraday()

+isRange()

+isRenko()

+isVolume()

+isTick()

BarSize

Encapsulates

enumeration classes

into a single interface

(for convenience).

Contains utility

methods for use

when developing

studies. (consult API

documentation)

Represents an

instrument. Contains

methods for getting

latest data,

calculating PnL,

formatting etc.

Bar size. Includes

linear data (minutes)

and non-linear such

as Range, Renko,

Constant Volume,

Tick etc

System Defaults.

Mostly contains fonts

and colors as

configured by the

user. Most of these

come from the

current chart theme.

‘X11’ colors. Useful

for setting default

colors on lines,

shades etc.

MotiveWave™
SDK Programming Guide

Version 1.3 ©2019 MotiveWave™ Software Page 30 of 85

3 Overlay Example: ‘My Moving Average’

In this section we will create a very simple example called ‘My Moving Average’ that displays an
exponential moving average as a path on a plot.

Let’s start by looking at the code for this example:

package study_examples;

import com.motivewave.platform.sdk.common.*;

import com.motivewave.platform.sdk.common.desc.*;

import com.motivewave.platform.sdk.study.*;

/** This simple example displays an exponential moving average. */

@StudyHeader(

 namespace="com.mycompany",

 id="MY_MA",

 name="My Moving Average",

 label="My MA",

 desc="This simple example displays an exponential moving average",

 menu="My Studies",

 overlay=true,

 studyOverlay=true)

public class MyMovingAverage extends Study

{

 enum Values { MA };

 /** This method initializes the study by doing the following:

 1. Define Settings (Design Time Information)

 2. Define Runtime Information (Label, Path and Exported Value) */

 @Override

 public void initialize(Defaults defaults)

 {

 // Describe the settings that may be configured by the user.

 // Settings may be organized using a combination of tabs and groups.

 SettingsDescriptor sd = new SettingsDescriptor();

 setSettingsDescriptor(sd);

 SettingTab tab = new SettingTab("General");

 sd.addTab(tab);

 SettingGroup inputs = new SettingGroup("Inputs");

 // Declare the inputs that are used to calculate the moving average.

 // Note: the 'Inputs' class defines several common input keys.

 // You can use any alpha-numeric string that you like.

 inputs.addRow(new InputDescriptor(Inputs.INPUT, "Input", Enums.BarInput.CLOSE));

 inputs.addRow(new IntegerDescriptor(Inputs.PERIOD, "Period", 20, 1, 9999, 1));

 tab.addGroup(inputs);

 SettingGroup colors = new SettingGroup("Display");

 // Allow the user to change the settings for the path that will

 // draw the moving average on the plot. In this case, we are going

 // to use the input key Inputs.PATH

 colors.addRow(new PathDescriptor(Inputs.PATH, "Path", null, 1.0f, null, true, true, false));

 tab.addGroup(colors);

 // Describe the runtime settings using a 'StudyDescriptor'

 RuntimeDescriptor desc = new RuntimeDescriptor();

 setRuntimeDescriptor(desc);

 // Describe how to create the label. The label uses the

 // 'label' attribute in the StudyHeader (see above) and adds the input values

 // defined below to generate a label.

 desc.setLabelSettings(Inputs.INPUT, Inputs.PERIOD);

 // Exported values can be used to display cursor data

 // as well as provide input parameters for other studies,

 // generate alerts or scan for study patterns (see study scanner).

 desc.exportValue(new ValueDescriptor(Values.MA, "My MA", new String[] {Inputs.INPUT, Inputs.PERIOD}));

 // MotiveWave will automatically draw a path using the path settings

 // (described above with the key 'Inputs.LINE') In this case

MotiveWave™
SDK Programming Guide

Version 1.3 ©2019 MotiveWave™ Software Page 31 of 85

 // it will use the values generated in the 'calculate' method

 // and stored in the data series using the key 'Values.MA'

 desc.declarePath(Values.MA, Inputs.PATH);

 }

 /** This method calculates the moving average for the given index in the data series. */

 @Override

 protected void calculate(int index, DataContext ctx)

 {

 // Get the settings as defined by the user in the study dialog

 // getSettings() returns a Settings object that contains all

 // of the settings that were configured by the user.

 Object input = getSettings().getInput(Inputs.INPUT);

 int period = getSettings().getInteger(Inputs.PERIOD);

 // In order to calculate the exponential moving average

 // we need at least 'period' points of data

 if (index < period) return;

 // Get access to the data series.

 // This interface provides access to the historical data as well

 // as utility methods to make this calculation easier.

 DataSeries series = ctx.getDataSeries();

 // This utility method allows us to calculate the Exponential

 // Moving Average instead of doing this ourselves.

 // The DataSeries interface contains several of these types of methods.

 Double average = series.ema(index, period, input);

 // Calculated values are stored in the data series using

 // a key (Values.MA). The key can be any unique value, but

 // we recommend using an enumeration to organize these within

 // your class. Notice that in the initialize method we declared

 // a path using this key.

 series.setDouble(index, Values.MA, average);

 }

}

All studies must derive from the base class ‘Study’ (com.motivewave.platform.sdk.study.Study). This
class contains a number of methods that we can override (we will look at these in detail later). For the
purposes of this example, we will explore the following:

• StudyHeader

• initialize method

• calculate method

3.1 StudyHeader Annotation (@StudyHeader)

All studies must define a study header. This is an annotation that is placed before declaring the class:

MotiveWave™
SDK Programming Guide

Version 1.3 ©2019 MotiveWave™ Software Page 32 of 85

Figure 25 - My MA Study Header

There are a number of important items in this header:

• namespace – this is used to qualify related studies and avoid naming conflicts with studies
developed by third parties. It is recommended that you use a form similar to ‘com.<name of
your organization>’ Together with the id tag, these form a globally unique identifier for your
study

• id – this identifies your study and must be unique within your namespace

• name – This is the name of your study and is displayed in the study dialog as well as the study
menu

• label – This is used as part of the study legend (displayed in the top left corner of the plot
underneath the plot title). If not specified, the name attribute will be used.

• desc – This is the description of your study and is displayed in the study dialog

• menu – Identifies the menu (underneath the Study menu) where this study can be found

• overlay – If true indicates that this study will be an overlay displayed on another plot

• studyOverlay – Indicates that this study can be used as an overlay on a study plot.

3.2 initialize method

The ‘initialize’ method is used to perform any necessary initialization work when the study is created.
This method is given access to system defaults (such as colors or fonts) available through the ‘Defaults’
class (see API documentation for specific details). The most common usage of this method is to do the
following:

1. Describe Design Information (ie: inputs) – The SettingsDescriptor describes settings for the study
and how to display this to the user (in the Study Dialog).

MotiveWave™
SDK Programming Guide

Version 1.3 ©2019 MotiveWave™ Software Page 33 of 85

2. Describe Runtime Information – The StudyDescriptor describes information to MotiveWave™ so
it knows how to handle this study at runtime (ie label settings, paths, exported values etc).

MotiveWave™
SDK Programming Guide

Version 1.3 ©2019 MotiveWave™ Software Page 34 of 85

Figure 26 - My MA initialize method

3.2.1 Design Time Information

MotiveWave™
SDK Programming Guide

Version 1.3 ©2019 MotiveWave™ Software Page 35 of 85

In our case, we need two types of inputs in order to calculate our exponential moving average:

1. Input – By default we will use the closing price for the bar (Enums.BarInput.CLOSE), but we will
allow the user to choose something different (if they desire).

2. Period – This is the number of bars to look back when computing the average

For convenience, we will also allow the user to modify properties of the ‘Path’ such as the line color,
style and weight.

The following diagram illustrates the Study Dialog that is presented to the user when they create or
modify our study. Notice how the information described in the StudyHeader and the SettingsDescriptor
are used to generate this dialog.

Figure 27 - Study Dialog

The classes used in this section are available from the package
‘com.motivewave.platform.sdk.common.desc’. There are a number of classes in this package (see API
documentation for full details). In this example we are concerned with the following:

• SettingsDescriptor – This class encapsulates all of the settings

• SettingTab – Used to organize settings into ‘Tabs’ that are displayed in the Study Dialog

• SettingGroup – Organizes settings within a tab into logical groups

• Setting Descriptors – MotiveWave™ has many setting descriptors (base class SettingDescriptor).
The ones used in this example are:

o InputDescriptor – Inputs used to calculate values. Typically these are historical data
inputs such as open, high, low or close values, but may also include derived values (such
as weighted price) or values generated by other studies.

o IntegerDescriptor – Describes an integer input value. This can be constrained to a
specified range (1 – 9999 in this case)

o PathDescriptor – Describes how to render the path. In this case the user can choose the
line width, style and color

MotiveWave™
SDK Programming Guide

Version 1.3 ©2019 MotiveWave™ Software Page 36 of 85

3.2.2 Run Time Information

Run time information is specified using the RuntimeDescriptor. For the purposes of our example, this
will include the following:

• Label Settings – Describes how to create and display the label (study legend) for this study. In
our case we want the label to include the Input and Period. For example, with an input of CLOSE
and a period of 20, the label will look like: ‘My MA(C,20)’

• Declare Path – Tell MotiveWave™ to create and draw a path using the information created by
the PathDescriptor and the values generated by the study

• Export Value – Exported values may be used for a number of purposes, most notably:
o Cursor Data – Displaying information in the Cursor Data Window
o Input for Other Studies – Exported values can be used as input to other studies
o Input for Alerts – Alerts can be created to be triggered off of study values
o Study Scan – When creating a study scanner, these exported values can be used to find

specific conditions.

The following screenshot displays what our study looks like at Runtime:

Figure 28 - My Moving Average

3.3 calculate method

This method is used to calculate the value(s) for a particular bar in the data series (identified by the
index parameter). This method is called by the ‘calculateValues’ method for every bar in the data series.
Alternatively, you could override the ‘calculateValues’ method if you want to handle the creation of all
values for the data series.

In this case we are going to do the following:

MotiveWave™
SDK Programming Guide

Version 1.3 ©2019 MotiveWave™ Software Page 37 of 85

1. Retrieve the User Settings – ‘getSettings()’ returns a reference to the Settings object.
2. Get the DataSeries – This is the interface to the historical data and a repository for any values

computed by the study. This also contains several utility methods for computing values such as
moving averages.

3. Compute the EMA – this is done by calling the utility method ‘ema’ with the input specified by
the user.

4. Store the EMA in the data series – This value is stored at the given index using the key:
Values.MA

Figure 29 - My Moving Average calculate method

MotiveWave™
SDK Programming Guide

Version 1.3 ©2019 MotiveWave™ Software Page 38 of 85

4 Study Plot Example: ‘Simple MACD’

In this example we are going to create a Study Plot based on a simple MACD. Note: if you would like a
more comprehensive MACD example, you can look at the source code for the MACD indicator that exists
within MotiveWave™.

MACD stands for ‘Moving Average Convergence/Divergence’ and was written by Gerald Appel in the
1970s. If you would like more information on this study go to: http://en.wikipedia.org/wiki/MACD.

Here is a screen shot of what this study looks like:

Figure 30 - Simple MACD

Here is a screen shot of the Study Dialog that the user will use to configure the Simple MACD:

http://en.wikipedia.org/wiki/MACD

MotiveWave™
SDK Programming Guide

Version 1.3 ©2019 MotiveWave™ Software Page 39 of 85

Let us start by looking at the source code for this study:

package study_examples;

import com.motivewave.platform.sdk.common.*;

import com.motivewave.platform.sdk.common.desc.*;

import com.motivewave.platform.sdk.study.*;

/** Simple MACD example. This example shows how to create a Study Plot

 that is based on the MACD study. For simplicity code from the

 MotiveWave MACD study has been removed or altered. */

@StudyHeader(

 namespace="com.mycompany",

 id="SimpleMACD",

 name="Simple MACD",

 desc="This is a simple version of the MACD for example purposes.",

 menu="My Studies",

 overlay=false)

public class SimpleMACD extends Study

{

 // This enumeration defines the variables that we are going to store in the

 // Data Series

 enum Values { MACD, SIGNAL, HIST };

 final static String HIST_IND = "histInd"; // Histogram Parameter

 /** This method initializes the settings and defines the runtime settings. */

 @Override

 public void initialize(Defaults defaults)

 {

 // Define the settings for this study

 // We are creating 2 tabs: 'General' and 'Display'

 SettingsDescriptor settings = new SettingsDescriptor();

 setSettingsDescriptor(settings);

 SettingTab tab = new SettingTab("General");

 settings.addTab(tab);

 // Define the 'Inputs'

 SettingGroup inputs = new SettingGroup("Inputs");

 inputs.addRow(new InputDescriptor(Inputs.INPUT, "Input", Enums.BarInput.CLOSE));

 inputs.addRow(new IntegerDescriptor(Inputs.PERIOD, "Period 1", 12, 1, 9999, 1));

 inputs.addRow(new IntegerDescriptor(Inputs.PERIOD2, "Period 2", 26, 1, 9999, 1));

 inputs.addRow(new IntegerDescriptor(Inputs.SIGNAL_PERIOD, "Signal Period", 9, 1, 9999, 1));

 tab.addGroup(inputs);

MotiveWave™
SDK Programming Guide

Version 1.3 ©2019 MotiveWave™ Software Page 40 of 85

 tab = new SettingTab("Display");

 settings.addTab(tab);

 // Allow the user to configure the settings for the paths and the histogram

 SettingGroup paths = new SettingGroup("Paths");

 tab.addGroup(paths);

 paths.addRow(new PathDescriptor(Inputs.PATH, "MACD Path",

 defaults.getLineColor(), 1.5f, null, true, false, true));

 paths.addRow(new PathDescriptor(Inputs.SIGNAL_PATH, "Signal Path",

 defaults.getRed(), 1.0f, null, true, false, true));

 paths.addRow(new BarDescriptor(Inputs.BAR, "Bar Color", defaults.getBarColor(), true, true));

 // Allow the user to display and configure indicators on the vertical axis

 SettingGroup indicators = new SettingGroup("Indicators");

 tab.addGroup(indicators);

 indicators.addRow(new IndicatorDescriptor(Inputs.IND, "MACD Ind",

 null, null, false, true, true));

 indicators.addRow(new IndicatorDescriptor(Inputs.SIGNAL_IND, "Signal Ind",

 defaults.getRed(), null, false, false, true));

 indicators.addRow(new IndicatorDescriptor(HIST_IND, "Hist Ind",

 defaults.getBarColor(), null, false, false, true));

 RuntimeDescriptor desc = new RuntimeDescriptor();

 setRuntimeDescriptor(desc);

 desc.setLabelSettings(Inputs.INPUT, Inputs.PERIOD, Inputs.PERIOD2, Inputs.SIGNAL_PERIOD);

 // We are exporting 3 values: MACD, SIGNAL and HIST (histogram)

 desc.exportValue(new ValueDescriptor(Values.MACD, "MACD", new String[]

 {Inputs.INPUT, Inputs.PERIOD, Inputs.PERIOD2}));

 desc.exportValue(new ValueDescriptor(Values.SIGNAL, "MACD Signal",

 new String[] {Inputs.SIGNAL_PERIOD}));

 desc.exportValue(new ValueDescriptor(Values.HIST, "MACD Histogram", new String[]

 {Inputs.PERIOD, Inputs.PERIOD2, Inputs.SIGNAL_PERIOD}));

 // There are two paths, the MACD path and the Signal path

 desc.declarePath(Values.MACD, Inputs.PATH);

 desc.declarePath(Values.SIGNAL, Inputs.SIGNAL_PATH);

 // Bars displayed as the histogram

 desc.declareBars(Values.HIST, Inputs.BAR);

 // These are the indicators that are displayed in the vertical axis

 desc.declareIndicator(Values.MACD, Inputs.IND);

 desc.declareIndicator(Values.SIGNAL, Inputs.SIGNAL_IND);

 desc.declareIndicator(Values.HIST, HIST_IND);

 // These variables are used to define the range of the vertical axis

 desc.setRangeKeys(Values.MACD, Values.SIGNAL, Values.HIST);

 // Display a 'Zero' line that is dashed.

 desc.addHorizontalLine(new LineInfo(0, null, 1.0f, new float[] {3,3}));

 }

 /** This method calculates the MACD values for the data at the given index. */

 @Override

 protected void calculate(int index, DataContext ctx)

 {

 int period1 = getSettings().getInteger(Inputs.PERIOD);

 int period2 = getSettings().getInteger(Inputs.PERIOD2);

 int period = Util.max(period1, period2);

 if (index < period) return; // not enough data to compute the MAs

 // MACD is the difference between two moving averages.

 // In our case we are going to use an exponential moving average (EMA)

 Object input = getSettings().getInput(Inputs.INPUT);

 DataSeries series = ctx.getDataSeries();

 Double MA1 = null, MA2 = null;

 MA1 = series.ema(index, period1, input);

 MA2 = series.ema(index, period2, input);

 if (MA1 == null || MA2 == null) return;

 // Define the MACD value for this index

 double MACD = MA1 - MA2;

 series.setDouble(index, Values.MACD, MACD);

 int signalPeriod = getSettings().getInteger(Inputs.SIGNAL_PERIOD);

 if (index < period + signalPeriod) return; // Not enough data yet

MotiveWave™
SDK Programming Guide

Version 1.3 ©2019 MotiveWave™ Software Page 41 of 85

 // Calculate moving average of MACD (signal path)

 Double signal = series.sma(index, signalPeriod, Values.MACD);

 series.setDouble(index, Values.SIGNAL, signal);

 if (signal == null) return;

 // Histogram is the difference between the MACD and the signal path

 series.setDouble(index, Values.HIST, MACD - signal);

 series.setComplete(index);

 }

}

4.1 StudyHeader Annotation (@StudyHeader)

The main difference in the study header from the previous example is the ‘overlay’ tag is set to false.
This indicates to MotiveWave™ that this study should be displayed in a separate study plot. You will
notice here as well that we have included some HTML markup in the ‘desc’ tag. The description
displayed in the Study Dialog supports HTML so you can put any valid HTML tags here (do not include
JavaScript, this is not supported).

Figure 31 - Simple MACD Study Header

4.2 initialize method

We have defined a bit more in the initialize section from the previous example. To illustrate the usage
of tabs, we have created 2 tabs: ‘General’ and ‘Display’. We have also defined the bars for the
histogram (see BarDescriptor).

Indicators are displayed on the vertical axis (right side of the screen). By default, we are only going to
show the first indicator (MACD), but we will allow the user to show indicators for the current signal
value as well as the histogram. For this we will use the IndicatorDescriptor and set the values
accordingly. We have organized these into a Setting Group called ‘Indicators’

The following screen shot (with markup) shows the part of the initialize method where we are describing
the settings for the study:

MotiveWave™
SDK Programming Guide

Version 1.3 ©2019 MotiveWave™ Software Page 42 of 85

Figure 32 - Simple MACD initialize settings

Next, we need to describe the runtime parameters using the RuntimeDescriptor. For the label, we want
to append the input, period, period2 and the signal period.

In this case, we are going to export 3 values: MACD, SIGNAL and HIST.

In order to display the histogram as bars, we use the ‘declareBars’ method on the study descriptor. This
will tell MotiveWave™ to show vertical bars using the BarDescriptor identified by Inputs.BAR.

MotiveWave™
SDK Programming Guide

Version 1.3 ©2019 MotiveWave™ Software Page 43 of 85

Figure 33 - Simple MACD initialize runtime

4.3 calculate Method

The calculate method is used to compute the values for each historical bar in the data series. In our
case, we are going to do the following:

1. Retrieve User Settings – these are accessed from the getSettings() method.
2. Compute and Store the MACD – The DataSeries object contains the historical data as well as the

utility methods for computing moving averages. The MACD value is stored in the data series at
the given index using the key Values.MACD.

MotiveWave™
SDK Programming Guide

Version 1.3 ©2019 MotiveWave™ Software Page 44 of 85

3. Compute and Store the signal – The signal is a moving average of the MACD. Use the data series
to compute the moving average with Values.MACD as the key. The signal value is stored in the
data series at the given index using the key: Values.SIGNAL.

4. Compute and store the histogram – The histogram is simply the difference between the MACD
and the signal. This is stored in the data series at the given index using the key: Values.HIST.

5. Mark the index as ‘Complete’ - Finally, indicate that this index is ‘complete’. This allows
MotiveWave™ to cache these values (to improve performance).

Figure 34 - Simple MACD calculate method

MotiveWave™
SDK Programming Guide

Version 1.3 ©2019 MotiveWave™ Software Page 45 of 85

5 Drawing Figures

The draw package (com.motivewave.platform.sdk.draw) contains classes for drawing figures (markers,
lines etc) as part of the study. Additional classes will likely be added to this package as the SDK evolves.

All figures have one or more Coordinate values (see common package) that are used to specify the
location of the figure. These coordinates are composed of a ‘real’ time and value that are translated to
plot (x,y) points before they are drawn.

Figure 35 - draw classes

The following methods are available on the Study class for working with figures:

• clearFigures() – clears all figures from the study

• addFigure(Figure f) - adds a figure to the study

• removeFigure(Figure f) – removes an existing figure

• getFigures() – gets all of the figures added to the study

5.1 Figure Class

The Figure class is the base class for all figures that may be drawn as part of the study. You may derive
from the class to create a custom figure to display as part of the study. This class consists of the
following methods:

MotiveWave™
SDK Programming Guide

Version 1.3 ©2019 MotiveWave™ Software Page 46 of 85

1. isVisible(DrawContext ctx) – returns true if this figure is currently visible in the given draw
context. This is used by the study framework to improve performance by only working with
figures that are currently visible.

2. contains(double x, double y, DrawContext ctx) – returns true if the figure contains the given
(x,y) coordinates. This is used by the study framework to determine if the mouse pointer is
currently above the study (and is selectable).

3. layout(DrawContext ctx) – This method is used to prepare the figure to be drawn. Typically
coordinates are translated to plot values (x,y pixel locations) and any intermediate draw figures
are created.

4. draw(Graphics2D gc, DrawContext ctx) – This method draws the figure on the plot.
5. getPopupMessage(double x, double y, DrawContext ctx) – Gets a popup message to display

when the user hovers above the figure. The (x,y) parameters are the coordinates of the mouse
on the chart.

6. setPopMessage(String msg) – Sets the message to display when the mouse is hovering over the
figure. If this method is called there is no need to override the getPopupMessage(…) method
above.

7. get/setBounds() – Use these methods to define the bounding rectangle for the figure. By default
the contains(…) method will use this to test if the figure contains the given (x,y) parameters.

5.2 Box

Use this class to draw a rectangular box with an optional fill color.

5.3 ColorRange Class

This class is convenient for creating ‘Heat Map’ studies. A good example of this is the Swami Stochastics
study. Each ColorRange object is essentially a bar that has a series of colors regions defined for a range
of values. The following screen shot illustrates what this looks like:

Figure 36 - Color Range Example

MotiveWave™
SDK Programming Guide

Version 1.3 ©2019 MotiveWave™ Software Page 47 of 85

5.4 Line Class

The Line class is useful for drawing trend lines or vertical/horizontal lines. There are several convenience
options in this class for extending the line, setting the color and line style. You can even have the line
draw a different color above and below a given value.

5.5 Polygon

Draws a shape with 3 or more points.

5.6 ResizePoint

This is a special type of figure that enables users to interact with a study using the mouse. Users can
drag a resize point to a specific location. The study will receive the following resize events:

1. onBeginResize(ResizePoint rp, DrawContext ctx) – This is called when the user begins a drag
operation on the resize point

2. onResize(ResizePoint rp, DrawContext ctx) – This is called as the user drags the resize point. It
gives the study an opportunity to provide visual feedback as the user moves the mouse.

3. onEndResize(ResizePoint rp, DrawContext ctx) – This is called when the drag operation is
completed. Override this method to store changes in the settings. The study will be recalculated
after this method is called.

The follow excerpt from the TrendLine example study (see Study Examples project) shows an example of
using the onResize() and onEndResize() methods:

MotiveWave™
SDK Programming Guide

Version 1.3 ©2019 MotiveWave™ Software Page 48 of 85

5.6.1 Resize Types

There are 3 types of resize points supported to constrain how they can be adjusted by the user. These
types are defined in the enumeration ResizeType (found in the Enums interface):

1. Horizontal – This type of resize point can only be moved left or right. Its vertical position will
remain constant. By default, these resize points will be colored yellow.

2. Vertical – Only up and down movement is allowed. Its horizontal (x) position will remain
constant . By default, these resize points will be colored yellow.

3. All – Unrestricted. The user can move these types of points anywhere on the screen. By default
these types of resize points will be colored green.

The screen shot below shows an example of using resize points that have a type of ‘All’. This is from the
example TrendLine study:

Figure 37 Resize Points of Type ‘All’

MotiveWave™
SDK Programming Guide

Version 1.3 ©2019 MotiveWave™ Software Page 49 of 85

The screen shot below illustrates the use of a ‘Horizontal’ resize point to position the cycles in the Hurst
Cycles study:

Figure 38 Horizontal Resize Points

5.6.2 Absolute Positioning

The location of a resize point can be relative or absolute. If a resize point is absolute (see ‘absolute’
property on the ResizePoint class) then its position is defined by a specific time and value (usually price).
If relative positioning is used then the resize point is specified using the (x,y) screen coordinates on the
chart.

5.7 SinglePointFigure

A SinglePointFigure is a special type of Figure that defines figures that are located on the chart by a
single point (coordinate). For convenience, multiple figures that are located at the same coordinate may
be may be “stacked” above or below each other to improve readability.

This class currently has two subclasses:

1. Marker
2. Label

MotiveWave™
SDK Programming Guide

Version 1.3 ©2019 MotiveWave™ Software Page 50 of 85

5.7.1 Marker Class

The Marker class makes it convenient to highlight points of interest on the plot. Often this class is used
in conjunction with signals. There are several different types of markers (triangle, arrow, circle etc).
These types are defined in the enumeration MarkerType (found in the Enums interface).

5.7.2 Label Class

This class makes it easy to draw text labels at specific points on the study.

MotiveWave™
SDK Programming Guide

Version 1.3 ©2019 MotiveWave™ Software Page 51 of 85

6 Signals

All studies and strategies may generate signals. Signals are events that occur at points of interest in a
study. Often signals are used as indicators of buy or sell points.

The end user may configure the study to create alerts from the signals generated by the study. To
provide a high level of flexibility, the user may choose which signals they want alerts for and how the
alerts behave.

The Sample Moving Average Cross (see sample project) is one example of a study that generates signals.
This study generates two signals:

1. Fast MA Crossed Above – This occurs when the Fast MA (shorter period) crosses above the Slow
MA

2. Fast MA Crossed Below – This occurs when the Fast MA crosses below the Slow MA

By default, these signals do not do anything other than show an up or down marker where the crosses
occur on the plot. The user can configure alerts for these signals from the ‘Signals’ tab of the Study
Dialog.

Figure 39 - Signals Tab

The following steps are required to generate signals for a study:

1. signal tag – set the ‘signal’ property in the StudyHeader to true
2. declare signals – There are two signals, cross above and cross below.
3. call ‘signal’ method – this generates the signals.

MotiveWave™
SDK Programming Guide

Version 1.3 ©2019 MotiveWave™ Software Page 52 of 85

Figure 40 - signal tag (StudyHeader)

MotiveWave™
SDK Programming Guide

Version 1.3 ©2019 MotiveWave™ Software Page 53 of 85

Figure 41 - Generating Signals

MotiveWave™
SDK Programming Guide

Version 1.3 ©2019 MotiveWave™ Software Page 54 of 85

7 Tick Data
Version 5 of MotiveWave™ includes support for handling live and historical tick data (if supported by the
broker and/or data service). Live and historical ticks are described using the Tick interface (see below).
The time of the tick can be accessed via the getTime() method. This returns the number of milliseconds
since January 1, 1970 (epoch time).

Figure 42 Tick Interface

Historical ticks can be requested at any time from the Instrument interface using the getTicks(startTime,
endTime) method. This will return a list of ticks that occurred on the instrument between the start and
end times.

MotiveWave™
SDK Programming Guide

Version 1.3 ©2019 MotiveWave™ Software Page 55 of 85

Figure 43 Instrument getTicks()

Live ticks can be processed through the onTick(dataContext, tick) method in the Study class. This
method will be called every time a new tick is generated on the instrument.

Figure 44 Study onTick Method

MotiveWave™
SDK Programming Guide

Version 1.3 ©2019 MotiveWave™ Software Page 56 of 85

8 Strategies

Strategies allow you to automate (or partially automate) the buying and selling of instruments. The
strategy APIs build upon the study classes and interfaces described in the preceding sections.

8.1 StudyHeader

Let’s start buy looking at what is needed in the StudyHeader to declare a strategy:

Figure 45 - Study Header - Strategy Options

The most important property to have set is “strategy=true”. The “autoEntry” and “manualEntry”
properties may be used to indicate that the strategy is automatic or manual (Note: Trade Manager is an
example of a manual entry strategy).

MotiveWave™
SDK Programming Guide

Version 1.3 ©2019 MotiveWave™ Software Page 57 of 85

8.2 Study Class

There are a number of other methods available on the Study class that may be used for strategies. The
following excerpt from the Study class illustrates the strategy event methods:

Figure 46 - Strategy Events

• onActivate(OrderContext ctx) – This method is called when the user presses the ‘Activate’

button in the Control Box. If the user has chosen the ‘Enter on Activate’ option this method
should create an entry order for the appropriate direction.

• onBarOpen(OrderContext ctx) – This method is called when the price bar is first opened. Note:
live bar updates must be enabled for this method to be called.

• onBarUpdate(OrderContext ctx) – This method is called when the current price bar is updated.
Note: live bar updates must be enabled for this method to be called.

• onBarClose(OrderContext ctx) – This method is called when the current price bar is closed (just
before the next price bar is opened).

• onSignal(OrderContext ctx, Object signal) – This method is called when a signal is raised by a
study. This is a convenient method to override if your strategy is based on signals from an
existing study (see Sample MA Cross Strategy).

• onDeactivate(OrderContext ctx) – Called when the user presses the ‘Deactivate’ button. By
default this method will close the open position (if enabled by the user).

• onReset(OrderContext ctx) – This is called when the user presses the ‘reset’ button on the
control box.

• onPositionClosed(OrderContext ctx) – Called when an open position is closed.

MotiveWave™
SDK Programming Guide

Version 1.3 ©2019 MotiveWave™ Software Page 58 of 85

• onEnterNow(OrderContext ctx) – Called when the user presses the ‘Enter Now’ button on the
Control Box. Note: this is only applicable for manual strategies.

In addition to the events described above, there are also a set of methods for handling orders and a set
of properties available to strategies. For a full list of available methods, please consult the API
documentation.

Figure 47 - Order Events and Properties

8.3 OrderContext Interface

The OrderContext interface is passed to most of the strategy events and provides functionality for
managing orders and positions. This interface also manages the current position state for the strategy
and provides methods for getting the unrealized profit/loss, average entry price etc. A number of
convenience methods also exist such as:

MotiveWave™
SDK Programming Guide

Version 1.3 ©2019 MotiveWave™ Software Page 59 of 85

• buy(int qty) – places a market order to buy the given quantity and waits for the order to be filled.

• sell(int qty) – places a market order to sell the given quantity and waits for the order to be filled.

• closeAtMarket() – closes the current position at market price.

Figure 48 - OrderContext Interface

The following methods may be used to manually create and manage stop, limit and market orders:

MotiveWave™
SDK Programming Guide

Version 1.3 ©2019 MotiveWave™ Software Page 60 of 85

Figure 49 - OrderContext Order Mgmt Methods

8.4 Order Interface

Strategies that simply buy and sell positions using the buy/sell methods will not have to deal with orders
directly.

Market Orders vs Stop/Limit Orders

It can be very tempting to use stop and/or limit orders in place of market orders when
implementing a strategy since these types of orders are already placed at the exchange and they
can help guarantee execution at a particular price.

There are however several behaviors to be aware of when using these types of orders especially
with fully automated strategies:

• Limit Orders are not guaranteed to be executed. Even if the price action has traded
through your limit price, it may not have been executed in a live environment if there was
not enough demand to fill your order at the specified price.

• Stop Orders are often triggered on Bid/Ask. It’s a common misconception that stop
orders are triggered by last price. Most (if not all) brokers trigger stop orders using the
bid or ask price (depending on whether it’s a buy or sell). This can cause your stop order

MotiveWave™
SDK Programming Guide

Version 1.3 ©2019 MotiveWave™ Software Page 61 of 85

to be executed unexpectedly early especially if there is a significant spread in the bid/ask
prices.

• Stop Orders are filled at market. Once a stop order is triggered, it is filled at market price.
Stop Limit orders do exist, but are not currently supported by this API. Also note that not
all brokers support Stop Limit orders.

If you choose to implement a fully automated strategy using non-market orders, you will need to
consider these behaviors and add the appropriate code to handle cases where your orders do not
get filled, or do not get filled at your expected price.

Ultimately, the choice you make will be a trade-off between order executions vs. fill price.

The following diagram illustrates some of the methods available in the Order interface. For a full list of
methods, consult the API documentation.

Figure 50 - Order Interface

MotiveWave™
SDK Programming Guide

Version 1.3 ©2019 MotiveWave™ Software Page 62 of 85

8.5 Trading Sessions

Version 1.1 of the SDK introduces the ability for the user to define trading sessions for a strategy.

A ‘trading session’ is simply a valid time period during the day in which trading is allowed for the
strategy. By default, all strategies support up to 2 trading sessions. This behavior can be modified in the
StudyHeader:

Figure 51 StudyHeader trading session options

The following screen shot illustrates an example of the MA Cross Strategy with the default settings for
Trading Sessions.

MotiveWave™
SDK Programming Guide

Version 1.3 ©2019 MotiveWave™ Software Page 63 of 85

Figure 52 Trading Session example: MA Cross Strategy

8.5.1 Runtime Support

The following additional methods have been added to the Settings class to access information chosen by
the user at runtime within the strategy:

MotiveWave™
SDK Programming Guide

Version 1.3 ©2019 MotiveWave™ Software Page 64 of 85

The following methods are also available on the Study class that may be optionally overridden. Note: if
‘enter on session start’ is enabled the strategy must override and implement the onSessionStart(...)
method to implement the entry logic.

8.6 Sample MA Cross Strategy

The following example illustrates a simple strategy based on the SampleMACross study (see sample
project and signals in Section 6). This strategy will buy when the fast moving average crosses above the
slow moving average and sell when it crosses below.

For convenience, this strategy will subclass the SampleMACross study and rely on the signals generated
for ‘Fast MA Crossed Above’ (Signals.CROSS_ABOVE) and ‘Fast MA Crossed Below’
(Signals.CROSS_BELOW).

Let’s take a look at the StudyHeader. The key properties to note here are: strategy=true and
autoEntry=true (1 below).

MotiveWave™
SDK Programming Guide

Version 1.3 ©2019 MotiveWave™ Software Page 65 of 85

Figure 53 - Sample MA Cross Strategy Header

For this strategy, we are going to override two methods:

• onActivate(OrderContext ctx) – If the user chooses to open a position on activate (see Trading
Options panel), we will open a long or short position depending on whether the fast MA is above
or below the slow MA (see 2 below)

• onSignal(OrderContext ctx, Object signal) – In this method, we will use the signals generated in
the SampleMACross class under the keys: Signals.CROSS_ABOVE and Signals.CROSS_BELOW (see
calculate method). Note: we are reversing a position if it is open. IE: a long position becomes a
short position and vice versa. (3 & 4 below)

MotiveWave™
SDK Programming Guide

Version 1.3 ©2019 MotiveWave™ Software Page 66 of 85

8.7 Strategy States

A strategy can be in one of three different states (defined in Enums.StrategyState):

1. Inactive – No trades are active and the strategy will not place any trades.
2. Active – The strategy may place trades to open or close positions
3. Dormant – In this state, the strategy is still active but does not place any new trades

The current state of the strategy can be queried/set from the following methods (on the Study Class):

1. getState() – returns the current state of the strategy
2. setState(Enums.StrategyState state) – Sets the new state for the strategy.

In most cases, the strategy state is initiated by the user by pressing the ‘Activate’ or ‘Deactivate’ button
from the Strategy Control Box. However, you can set the state from your strategy. This is most common
when switching the strategy to the ‘Dormant’ state. You may want to use this state to indicate that the

MotiveWave™
SDK Programming Guide

Version 1.3 ©2019 MotiveWave™ Software Page 67 of 85

strategy is waiting for a specify condition to happen before placing trades again. This is often used when
you just want the strategy to be active during specific hours of the day.

The following diagram illustrates these states and the transitions between them:

Figure 54 - Strategy States

ActiveInactive Dormant

User Presses

‘Activate’ Button

User Presses

‘Deactivate’ Button

or Initiated by

Strategy

Initiated by

Strategy

Initiated by

Strategy

8.8 Manual Strategies

MotiveWave™ allows you to create strategies that respond to user input to enter or exit a position. This
can be very useful as a way to help direct and manage exit points for user initiated trades. For an
example of how this works, see the Trade Manager strategy.

The following screen shots illustrate the Trade Manager strategy in action:

Figure 55 - Trade Manager

MotiveWave™
SDK Programming Guide

Version 1.3 ©2019 MotiveWave™ Software Page 68 of 85

Figure 56 - Trade Manager - Entering a Position

Figure 57 - Trade Manager Open Position

8.8.1 Entry States

In order to manage the orders for manual strategies, entry states have been defined to indicate the
current stage the strategy is in. These states are defined in the Enums.EntryState enumeration.

1. None – No entry state, waiting for the user to initiate the entry process
2. Pre-Entry – The user has initiated the entry process and the strategy is preparing to create the

entry order(s).
3. Waiting Entry – Waiting for entry orders to be filled (this state can be skipped if using market

orders).
4. Open – Position is open, waiting for the position to be closed.

MotiveWave™
SDK Programming Guide

Version 1.3 ©2019 MotiveWave™ Software Page 69 of 85

These states can be queried/set from the following methods in the Study Class:

1. getEntryState() – returns the current entry state for the strategy.
2. setEntryState(Enums.EntryState state) – sets the entry state for the strategy.

The following diagram illustrates these states and their transitions:

Figure 58 - Entry States

None Pre-Entry Waiting Entry Open

MotiveWave™
SDK Programming Guide

Version 1.3 ©2019 MotiveWave™ Software Page 70 of 85

9 Logging

Often as part of debugging, you will want to write information to a log. MotiveWave™ includes a study
log utility. This can be accessed from the Console menu bar: View -> Display -> Study Log.

The following diagram illustrates what the Study Log looks like:

There are 4 methods available (from the base class Study) for creating log entries:

MotiveWave™
SDK Programming Guide

Version 1.3 ©2019 MotiveWave™ Software Page 71 of 85

Figure 59 - Study logging methods

MotiveWave™
SDK Programming Guide

Version 1.3 ©2019 MotiveWave™ Software Page 72 of 85

10 Internationalization

For simplicity, the examples provided so far in this guide have translatable text embedded in the code
directly. Although MotiveWave™ does not currently support multiple languages (at least as of writing
this guide), it is inevitable that this will happen at some point in the near future.

All of the studies available in MotiveWave™ have the translatable text separated into a Resource Bundle.
Resource Bundles are a standard mechanism built into Java for internationalization. If you are
unfamiliar with this construct, there are many tutorials available on the internet. Here is a general
tutorial available on the Oracle™ website:
http://docs.oracle.com/javase/tutorial/i18n/resbundle/concept.html

Separating text in a study is very simple and only requires you to do the following:

1. Declare the Resource Bundle – In the Study Header, specify the package and name of the
resource bundle using the rb property

2. Use the get(“LABEL_ID”, …) to retrieve text. This method available from the Study class pulls
text from the resource bundle associated with the given ID. Values in the text can be replaced by
specifying these values after the label ID (named %1, %2, %3…)

10.1 Example: MACD

The following example shows the Study Header for the MACD study. In this case the rb property is
pointing to the resource bundle: com.motivewave.platform.study.nls.strings. This will resolve to the
strings.properties file (for English translation) in the com/motivewave/platform/study/nls directory.

Once the rb property is defined in the Study Header, MotiveWave™ will assume that the other
properties (that expect displayable text) are actually IDs that need to be resolved from the resource
bundle.

Figure 60 - Internationalization Study Header

http://docs.oracle.com/javase/tutorial/i18n/resbundle/concept.html

MotiveWave™
SDK Programming Guide

Version 1.3 ©2019 MotiveWave™ Software Page 73 of 85

Figure 61 - Resolving text using the 'get' method

Figure 62 - Resolving text using the get method with parameters

MotiveWave™
SDK Programming Guide

Version 1.3 ©2019 MotiveWave™ Software Page 74 of 85

Figure 63 - strings.properties file

MotiveWave™
SDK Programming Guide

Version 1.3 ©2019 MotiveWave™ Software Page 75 of 85

11 Deployment

The process of installing your extensions in MotiveWave™ is referred to as ‘Deployment’. There are
essentially two use cases for deploying extensions:

1. Development – As you are coding your extension, you will want to deploy your changes to
MotiveWave™ so you can test your changes.

2. Distribution – When you have completed development you will want to package your extensions
and make them available to other users.

11.1 Packaging

You may distribute your extensions by providing the .class (and .properties) files directly to your
customers but you may find this awkward if you have more than one.

The preferred way to distribute these files is to package them together in a Jar (Java ARchive) file. This is
a standard Java mechanism for distributing Java libraries or applications. If you would like to know more
about this format you can visit this website address:
http://java.sun.com/developer/Books/javaprogramming/JAR/

The sample Eclipse project includes the ability to create a Jar file for distribution in the ANT build script.
You may also use the deployment features of Eclipse to create your Jar file.

11.2 Loading Extensions

MotiveWave™ will dynamically load extensions from the directory ‘MotiveWave Extensions’. This
directory is created by MotiveWave™ when it first starts. Depending on the environment you have, it
will be found:

1. Windows – C:\Documents and Settings\<username>\MotiveWave Extensions
2. Mac OSX - /Users/<username>/MotiveWave Extensions

This directory is searched (recursively) for the following types of files:

1. JAR Files (.jar) – These are essentially ‘zip files’ that contain .class and .properties files
2. Class Files (.class) – These files are generated by the javac compiler. Note: you must preserve

the directory structure when copying these files into the ‘MotiveWave Extensions’ directory. For
example classes in the ‘study_examples’ package must be put in the ‘MotiveWave
Extensions\study_examples’ directory.

3. Properties Files (.properties) – These files contain the translatable text that has been separated
from the code (see section on Internationalization). Similar to the class files, you must preserve
the directory structure when copying these files into ‘MotiveWave Extensions’ directory.

‘.last_updated’ File

If you look in the ‘MotiveWave Extensions’ directory (Note: this is a hidden file on Mac OSX) you will see a
file called ‘.last_updated’. MotiveWave™ uses this file to determine is any of the files in this directory have
been changed since its last scan. If you want to test your changes without restarting MotiveWave™, you
will need to copy your changed files to ‘MotiveWave Extensions’ and then modify the timestamp on this file
(for example using the Unix ‘touch’ command).

The sample build.xml file (Apache ANT script) shows an example of how to modify this file to get

http://java.sun.com/developer/Books/javaprogramming/JAR/

MotiveWave™
SDK Programming Guide

Version 1.3 ©2019 MotiveWave™ Software Page 76 of 85

MotiveWave™ to reload extensions.

11.3 Third-Party Libraries (jars)

Starting with version 5.4.21 third-party libraries (jar files) can now be used in the SDK. These jar files
must be added in the ext subdirectory of the MotiveWave Extensions directory. On startup of
MotiveWave, all jar files in this subdirectory will be added to the class path. If any jar files are added or
modified in this directory, MotiveWave will need to be restarted to pick up the new changes.

The screen shot below shows an example of third-party libraries added to the ext directory in the
Motive Wave Extensions.

MotiveWave™
SDK Programming Guide

Version 1.3 ©2019 MotiveWave™ Software Page 77 of 85

12 Environment Setup

You may use any Java™ development environment you wish to develop extensions for MotiveWave™.
This section will explain how to get up and running with the Eclipse Integrated Development
Environment (IDE). We have also included a sample Eclipse Project that you may use as a starting point
for your own development. This sample project contains a build script (Apache ANT based) that makes it
easy to deploy your changes to MotiveWave™ and package your extensions for distribution.

Eclipse (www.eclipse.org) is the most popular tool for Java development and best of all its free! There
are many different environments for Java development, some of the more notable tools include:

1. NetBeans – This Open Source development environment is free as well and is developed by Sun
(now Oracle)

2. IntelliJ – http://www.jetbrains.com/idea
3. JCreator – http://www.jcreator.com

12.1 Where do I get the SDK?

The SDK (Software Development Kit) is built directly into MotiveWave™, but if you want to download
the mwave_sdk.jar, java doc and sample project you can get it from here:
http://support.motivewave.com/sdk/

12.2 Installing Java

If you have not done so already, you will need to download and install the Java Development Kit (JDK).
Please note: this is different than the Java Runtime Environment (JRE) as it contains development tools
such as the Java compiler (javac).

Version 5 of MotiveWave™ supports Java 1.8.0_121 and higher. If you are using an older version of
MotiveWave, you should check the installed Java version by choosing Help -> About from the console
menu bar.

The Java Development Kit can be downloaded here:
http://www.oracle.com/technetwork/java/javase/downloads/index.html

12.3 Installing Eclipse

Eclipse comes in many different versions (and flavors). For our purposes we just need basic Java
functionality so we will download ‘Eclipse IDE of Java Developers’. This can be found at the following
website: http://www.eclipse.org/downloads/

There are many different tutorials and books available to help you get started with Eclipse. If you don’t
want to search the internet, you can start here: http://www.eclipse.org/resources/?category=Tutorial

Here is a link to an introduction of the Java IDE: http://www.eclipse.org/resources/resource.php?id=505

12.4 Creating a Project

The first step to creating your own extensions is to create a project in Eclipse. From the top menu bar of
Eclipse choose: File -> New -> Java Project

http://www.eclipse.org/
http://www.jcreator.com/
http://support.motivewave.com/sdk/
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.eclipse.org/downloads/
http://www.eclipse.org/resources/?category=Tutorial
http://www.eclipse.org/resources/resource.php?id=505

MotiveWave™
SDK Programming Guide

Version 1.3 ©2019 MotiveWave™ Software Page 78 of 85

This will launch the New Project Dialog (see below). Enter a name for the project and click the Finish
button. In the next step we will be importing the sample project so there is no need to configure
anything specific for this project.

MotiveWave™
SDK Programming Guide

Version 1.3 ©2019 MotiveWave™ Software Page 79 of 85

Now that you have created an initial project you can import the sample project files from the zip file
‘MotiveWave Studies.zip’. Right click on the ‘MotiveWave Studies’ project that you just created and
choose ‘Import…’ from the menu.

MotiveWave™
SDK Programming Guide

Version 1.3 ©2019 MotiveWave™ Software Page 80 of 85

From the Import Dialog, open the ‘General’ folder and choose ‘Archive File’

MotiveWave™
SDK Programming Guide

Version 1.3 ©2019 MotiveWave™ Software Page 81 of 85

The next step is to specify the archive (.zip) file. In this case it will be ‘MotiveWave Studies.zip’. If you
have not done so already, download this sample project from the MotiveWave™ (see:
http://www.motivewave.com/support/sdk.htm)

You may be asked to confirm the overwriting of some files like ‘.classpath’. If this happens, press OK to
accept the changes.

MotiveWave™
SDK Programming Guide

Version 1.3 ©2019 MotiveWave™ Software Page 82 of 85

Once the import is complete, the structure of you project should look like the screenshot below.

MotiveWave™
SDK Programming Guide

Version 1.3 ©2019 MotiveWave™ Software Page 83 of 85

Now that you have the project created, you can deploy this to MotiveWave™. The ‘build.xml’ file (under
the ‘build’ folder can be used to compile your code and copy the files to the ‘MotiveWave Extensions’
directory. Right click on this file and choose ‘Run As -> Ant Build’

MotiveWave™
SDK Programming Guide

Version 1.3 ©2019 MotiveWave™ Software Page 84 of 85

By default this will run the ‘deploy’ target. This task will compile all of the source code under the ‘src’
folder and then copy it to the MotiveWave Extensions directory. Finally, it will modify the
‘.last_updated’ file to signal MotiveWave™ that it should scan for changes and load them.

The ‘Console’ tab will show the output from this action. It should look similar to the following screen
shot:

MotiveWave™
SDK Programming Guide

Version 1.3 ©2019 MotiveWave™ Software Page 85 of 85

Finally, if you have MotiveWave™ running, you should see an extra menu ‘Examples’ under the ‘Study’
menu that contains the two sample studies (see below)

